Experimental Investigation, Analysis and Optimisation of Hybrid Separation Processes
EFCE Excellence Award in Process Intensification 2009
Carsten Buchaly
Motivation

- Reduced volumina of apparatuses / capital costs
- Less energy consumption
- No auxiliary components required

- Strong interactions of both unit operations
- Detailed process know-how necessary
- Less experience existent
Process Description

Reactive Distillation
- Integration of reaction and separation
- Increased conversion and selectivity

Membrane Separation
- 1-Propanol recovery
- High selectivity
- Independent on VLE
Methodology

Hybrid Process
(reactive distillation + membrane separation)

<table>
<thead>
<tr>
<th>Theory</th>
<th>Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental design</td>
<td>Pilot-scale</td>
</tr>
<tr>
<td>Process analysis</td>
<td>Start-up behaviour</td>
</tr>
<tr>
<td>Optimisation</td>
<td>Process know-how</td>
</tr>
</tbody>
</table>
Methodology

Hybrid Process
(reactive distillation + membrane separation)

Theory
- Experimental design
- Process analysis
- Optimisation

Experiments
- Pilot-scale
- Start-up behaviour
- Process know-how

Unit operation 1
(reactive distillation)

Experiments
- Pilot-scale
- Operational parameters
- Model validation

Theory
- Experimental design
- Process analysis

Unit operation 2
(membrane separation)

Experiments
- Lab-scale
- Separation characteristics
- Model parameters

Experiments
- Pilot-scale
- Scale-up
Reactive distillation: pilot-scale plant

- Distillation column (DN 50)
- 5.5 m packing height

Investigated operating parameters
- Pressure: atmospheric
- Distillate-to-feed ratio: 0.33 - 0.45
- Molar feed ratio (χ): 2.1 - 2.5
- Reflux ratio (RR): 2.0 - 4.0

Database of 15 successfully realised RD experiments
Vapour permeation: pilot-scale plant

- Steady state vapour permeation experiments
- Connection with reactive distillation column to hybrid separation process
- Sulzer Pervap 2201(D) with $A_{\text{Mem}} = 0.5\text{m}^2$

Vapour permeation: pilot-scale plant

- Steady state vapour permeation experiments
- Connection with reactive distillation column to hybrid separation process
- Sulzer Pervap 2201(D) with $A_{\text{Memb}} = 0.5 \text{m}^2$

Binary system 1-propanol/water

- Water concentration: 13 - 30 wt.-%
- Feed temperature: 92.0 - 98.7 °C
- Feed pressure: atmospheric
- Permeate pressure: 30 - 70 mbar

Hybrid separation process: experimental investigations

RD and VP separated

sequential configuration

„closed recycle“
Hybrid separation process: experimental investigations

- Successful experiment with coupled unit operations

Hybrid separation process: experimental investigations

- Successful experiment with coupled unit operations
- Increase of ester concentration in the bottom
- Change of distillate composition

Hybrid separation process: experimental investigations

- Successful experiment with coupled unit operations
- Increase of ester concentration in the bottom
- Change of distillate composition

Strong interactions between both unit operations

Modelling approach

Reactive distillation based on non-equilibrium stage model
- Multicomponent mass transfer (Stefan-Maxwell)
- Packing specific correlations (hold-up, Δp, $k_g a$, $k_l a$)
- Steady state and dynamic process simulation

Vapour permeation based on „Solution-Diffusion-Model“
- Polarisation effects (c,T)
- Hydrodynamics (co-, counter-current; Δp)
- Membrane materials

Implemented in Aspen Custom Modeler™ (ACM)
Modelling approach

Reactive distillation based on non-equilibrium stage model
- Multicomponent mass transfer (Stefan-Maxwell)
- Packing specific correlations (hold-up, Δp, $k_g a$, $k_l a$)
- Steady state and dynamic process simulation

Vapour permeation based on „Solution-Diffusion-Model“
- Polarisation effects (c,T)
- Hydrodynamics (co-, counter-current; Δp)
- Membrane materials

Implemented in Aspen Custom Modeler™ (ACM)
Reactive distillation: model validation

Feed: 2,0 kg/h
\(\chi_{\text{POH/ProAc}}: 2,068\)
RR: 2,49
Distillate: 0,85 kg/h

Carsten Buchaly | EPIC2009-Venice-Italy, 17.06.2009
Reactive distillation: model validation

Feed: 2,0 kg/h
$$\chi_{\text{POH/ProAc}}$$: 2,068
RR: 2,49
Distillate: 0,85 kg/h

Correlations for column internals:
- Sulzer BX -> Bravo et al.**; Rocha et al.**
- Katapak-SP -> Brunazzi***

* Bravo et al. (1985): Hydr. Proc., 1, p. 91–95
Reactive distillation: model validation

Feed: 2,0 kg/h
\(\chi_{\text{POH/ProAc}} \): 2,068
RR: 2,49
Distillate: 0,85 kg/h

Correlations for column internals:
- Sulzer BX -> Bravo et al.*; Rocha et al.**
- Katapak-SP -> Brunazzi***

* Bravo et al. (1985): Hydr. Proc., 1, p. 91–95
Reactive distillation: model validation

Feed: 2,0 kg/h
$\chi_{\text{POH/ProAc}}$: 2,068
RR: 2,49
Distillate: 0,85 kg/h

Correlations for column internals:
- Sulzer BX -> Bravo et al.*; Rocha et al.**
- Katapak-SP -> Brunazzi***

Model validation successful

* Bravo et al. (1985): Hydr. Proc., 1, p. 91–95
Hybrid separation process: model validation

![Graph showing molar fraction in the liquid phase vs. packing height]

- POH (exp)
- ProPro (exp)
- ProAc (exp)
- Water (exp)

Carsten Buchaly | EPIC2009-Venice-Italy, 17.06.2009
Hybrid separation process: model validation

Sequential configuration

\[
\begin{align*}
X_{\text{ProAc,exp}} & = 74.4 \% \\
X_{\text{ProAc,sim}} & = 73.6 \% \\
X_{\text{POH,exp}} & = 29.8 \% \\
X_{\text{POH,sim}} & = 29.4 \%
\end{align*}
\]
Hybrid separation process: model validation

Sequential configuration

\[X_{\text{ProAc,exp}} = 74.4\% \quad X_{\text{ProAc,sim}} = 73.6\% \]
\[X_{\text{POH,exp}} = 29.8\% \quad X_{\text{POH,sim}} = 29.4\% \]

Closed recycle

\[X_{\text{ProAc,exp}} = 73.3\% \quad X_{\text{ProAc,sim}} = 73.5\% \]
\[X_{\text{POH,exp}} = 31.8\% \quad X_{\text{POH,sim}} = 31.9\% \]

Excellent agreement between experiments and simulation
Hybrid separation process: process analysis

\[D = \text{const} \]

\[\text{RR} = \text{const} \]

\[w_{\text{H}_2\text{O}} \text{ varied} \]

\[Q_H = ? \]

\[A_{\text{memb}} = ? \]
Hybrid separation process: process analysis

- Strong influence on A_{Memb}
- High degree of dewatering requires large A_{Memb}

Column:
- $D/F_{\text{mass}} = 0.375$
- RR = 2.5

Membrane:
- $\rho_{\text{perm}} = 30 \text{ mbar}$
- $\Delta T_{\text{sup}} = 4.0 \, ^{\circ}\text{C}$
Hybrid separation process: process analysis

- Strong influence on A_{Memb}
- High degree of dewatering requires large A_{Memb}
- Lower Q_H at higher recycle purity required

Graph

- **A_{memb}**
- **Q_H**

Parameters
- **Column:**
 - $D/F_{\text{mass}} = 0.375$
 - RR = 2.5
- **Membrane:**
 - $p_{\text{perm}} = 30 \text{ mbar}$
 - $\Delta T_{\text{sup}} = 4.0 ^\circ \text{C}$
Hybrid separation process: process analysis

- Strong influence on A_{Memb}
- High degree of dewatering requires large A_{Memb}
- Lower Q_H at higher recycle purity required

A_{memb} vs. Q_H

Optimisation problem

Column:
- $D/F_{\text{mass}} = 0.375$
- RR = 2.5

Membrane:
- $\rho_{\text{perm}} = 30 \text{ mbar}$
- $\Delta T_{\text{sup}} = 4.0 \degree \text{C}$

mass fraction of water in the recycle

reboiler heat duty / W

membrane area / m2
Hybrid separation process: process analysis

- Strong influence on A_{Memb}
- High degree of dewatering requires large A_{Memb}
- Lower Q_H at higher recycle purity required

Optimisation problem

Modified stochastic optimisation algorithm based on a differential evolution* approach (MDE)

Hybrid separation process: rigorous optimisation using MDE

Objective function: \[\text{min } Q_H = f(\text{RR, D/F}_{\text{mass}}, w_{\text{H2O,recycle}}) \]

Solution space: \[0.8 \leq \text{RR} \leq 5; \quad 0.25 \leq \text{D/F}_{\text{mass}} \leq 0.55; \quad 0.02 \leq w_{\text{H2O,recycle}} \leq 0.15 \]

Constrain: \[x_{\text{ProPro,bottom}} \geq 0.75 \]
no LLE

Hybrid separation process: rigorous optimisation using MDE

Objective function:
\[\min Q_H = f(RR, \frac{D}{F}_{\text{mass}}, w_{H2O,\text{recycle}}) \]

Solution space:
\[0.8 \leq RR \leq 5; \ 0.25 \leq \frac{D}{F}_{\text{mass}} \leq 0.55; \ 0.02 \leq w_{H2O,\text{recycle}} \leq 0.15 \]

Constrain:
\[x_{\text{ProPro, bottom}} \geq 0.75 \]

Constraints:
- no LLE
- \[\text{feasibility and applicability of the now available optimisation package based on detailed process models proven} \]

- 65 generations with 8 parents
- CPU-time ~ 12 hour
- \(Q_{H,\text{min}} = 1059 \text{ W} \)
- \(RR = 0.98; \frac{D}{F}_{\text{mass}} = 0.52; w_{H2O,\text{recycle}} = 0.022 \)
- \(A_{\text{memb}} = 3.04 \text{ m}^2 \)
Conclusion

- Choice of an appropriate chemical test system
- Development of a generic methodology for the design of hybrid processes
- Provision of reliable experimental data for the applied unit operations
- Experimental investigation of the fully coupled unit operations

Reliable experimental database for both unit operations and hybrid process

- Model validation for the stand-alone unit operations and the hybrid process
- Analysis of the influence of decisive operational parameters on the performance of the hybrid separation process
- Optimisation of the hybrid process using an evolutionary algorithm
Special thanks to:

Stefan Kluckhenn; Ildefonso Campos-Velasco; Christian Schroeder; Marcel Kotora; Martin Cruz-Dias; Carlos Duarte; Katrin Kissing; Siggi Weiss; Piotr Mitkowski; Paulo Perez; Gencay Cengiz; Rocio Castillo-Tornay; Dominik Plaßmann; Markus Hengsbach; Bharat Karanath; Mayur Dalwani; Mayuratheepan Puthirasigamany & the Laboratory of Fluid Separations

EU-Project INSERT
“Integrating Separation and Reaction Technologies“
(Contract No. NMP2-CT-2003-505862)

Marie Curie Training Site „Reactive Separations“
(Contract Nr. HPMT-CT-2001-00408)

Fonds der Chemischen Industrie

Carsten Buchaly | EPIC2009-Venice-Italy, 17.06.2009
Experimental Investigation, Analysis and Optimisation of Hybrid Separation Processes
EFCE Excellence Award in Process Intensification 2009
Carsten Buchaly