Industrial Vision of a Process Engineer in a Digital Plant

Thierry Cartage - Process Performance & Digital Director
Francisco Navarro Brull - Industrial Data Scientist

3rd EUROPEAN FORUM ON NEW TECHNOLOGIES
September 11, 2020
Our Vision of the Plant of the Future

- Agile and flexible in the face of an ever changing customer market
- Modular, standardized, scalable, repeatable, relocatable
- Secure in its access to infrastructure and data
- Simple, transparent and open for learning
- Customer oriented, pro-actively connected to customer needs and creating value with innovative products and services
- Sustainable, ensuring employee health and safety, with zero environmental impact
- 100% under control: Predictive, predictable and reliable
Digital transformation is business driven and geared towards multi-dimensional impact.

- **Asset owners / Business**
 - **Asset performance through ‘Data Analytics’**
 - Enhance process performance
 - **Asset-network value maximization**
 - Increase profitability by applying dynamic optimization algorithms
 - **Data-enabled asset reliability**
 - Leverage equipment data analytics to optimize maintenance
 - **Digital workforce**
 - Implement human – machine interface technology to streamline key processes
 - **Robotics & Cobotics**
 - Optimize plant fixed costs through robotization of key processes

Safety, **Working conditions**, **REBITDA**, **Quality**, **OTIF**, **Cash**
The 3 axes of the Plant Digital Transformation

Developing the Transformation program means:

- Enhancing **site and network infrastructures and OT/IT tools** such as AA, APC, Integrated Planning, etc
- Strengthen and speed-up **Performance Management**
- **Transform Mindset and Behaviors** of all employees in the unit/site
- Develop and leverage **new technical capabilities**
 (Data Scientist, Data Translator, Data steward, Transformation Mgr,..)
New roles are needed - Process engineers are key actors

Collaboration in multidisciplinary teams is key!
Advances and opportunities in machine learning for process data analytics

S. Joe Qina,b,*, Leo H. Chiangc [2019]

aMark Family Department of Chemical Engineering and Materials Science and Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
bThe Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Ave, Longgang, Shenzhen, Guangdong, 518022, China.
cChemometrics and Data Analytics, Data Services, The Dow Chemical Company, 332 SH 332 E, Lake Jackson, TX, 77566, USA.

Qin (2014), Reis et al. (2016), Chiang et al. (2017), and Venkatasubramanian (2019) provided comprehensive reviews of process data analytics and discussed a wide range of technical challenges. These articles reflected on a critique that spurious patterns and correlations outnumber genuine discoveries especially when process data analytics is applied to chemical engineering problems without context and domain knowledge. It is much easier to train chemical engineers on data analytics topics rather than to train data scientists on chemical engineering topics. As process industries employ a large number of chemical engineers, this community of practice is a fertile hunting ground to send motivated chemical engineers to pursue an advanced degree in data analytics and related disciplines.
The “digital” process engineer

1- Asking experts of each discipline two simple questions
 - Short list of the most common problems during diagnostics
 - Software or procedures (ex checklist) to identify these common problems

2- Classification

 Analytics
 - L1 - Screening (find)
 - L2 - Modeling (understand)
 - L3 - Optimization (improve)

 Control
 - L1 - Finding and visualizing historical data
 - L2 - Ad-hoc calculations (regression, SPC, PPK)
 - L3 - Sharing and automating data steps

 Instrumentation
 - L1 - Identify process variability in dynamic processes
 - L2 - Feedback control (PID intuition)
 - L3 - Advanced Process Control (feed-forward vs feedback)

 Process
 - L1 - Identify sensor failure (SPC, uncertainty)
 - L2 - Analysis of multiple factors (MSPC, anomaly detection)
 - L3 - Recalibration, monitoring, maintenance

 - L1 - Unplanned process changes
 - L2 - Bottleneck analysis
 - L3 - Capacity increase (Mod. And Sim.)

3- Build the training catalog with those 3 levels (awareness + problem based learning)

4- Build cursus (webinars, training on the job) adapted to individual background + coaching
Conclusions

- Chemical Engineering MUST be taught at “University”
- Problem based learning is encouraged
- Collaboration in multidisciplinary teams is key
 - Minimum understanding of other disciplines (process control, …)
 - soft skills / transferable skills
- Continuous improvement Mindset
- Digital = Data
 - Minimum level is to be able to detect anomalies (screening) thanks to process data analytics and to be able to interact with Data scientist and Data Steward
 - Options for more advanced trainings should exist (modeling and optimization)
 - Hands-on training followed by Coaching
Thank you for your attention.

Any question?

Together we can create a sustainable and shared future.