Distillation. Optimal operation using simple control structures

Sigurd Skogestad, NTNU, Trondheim

EFCE Working Group on Separations, Gøteborg, Sweden, June 2019

Distillation is part of the future

- 1. It's a myth that distillation is bad in terms of energy
- 2. Better operation and control can save energy
- 3. Integrated schemes can save energy and capital
 - Divided-wall / Petlyuk columns

OUTLINE

- Many columns operate poorly because of poor control
- Myths about distillatons
 - Ineffecient (large energy usage)
 - Slow response
- Petlyuk distillation
 - Vmin-diagram for insight and initialization of detailed simulation

Solvent recovery. Explosives plant, Norway

DNTNU

20 feb. 2019. After replacing some column internals (in the hope of fixing the problem)

Tray 10 temperature controlled using butyl-acetate reflux: Integral time (taui) = 10 minutes. TOO MUCH INTEGRAL ACTION! Sigurd's formula*: Increase Kc*taui by factor f = 0.1*(P/taui0)^2 = 0.1*(100/10)^2 = 10.

Problem solved by increasing integral time to 50 minutes.

*Sigurd Skogestad. "Simple analytic rules for model reduction and PID controller tuning" J. Process Control, vol. 13 (2003), 291-309

NTNU

«Distillation is an inefficient process which uses a lot of energy»

- This is a myth!
- By itself, distillation is an efficient process.
- It's the heat integration that may be inefficient.
- Yes, it can use a lot of energy, but it provides the same energy at a lower temperature
 - Difficult separations (close-boiling): use a lot of energy -- but well suited for heat pumps
 - Easy separations: Use little energy

Typical distillation Case

Example 8.20 from Skogestad (2008)

Thermodynamic (exergy) efficiency is 63%

Energy efficiency is only 5% (with no heat Integration) By defining "useful energy in" as "heat supply" Q_H , the thermodynamic efficiency (8.12) for distillation of this feed mixture is then

$$\eta = \frac{\text{ideal (minimum) heat supply}}{\text{actual heat supply distillation}} = \frac{Q_H^{\min}}{Q_H} = \frac{20 \text{ kJ/mol}}{31.8 \text{ kJ/mol}} = 0.63$$

Thus, distillation as a separating process has a good thermodynamic efficiency (63% in this case). On the other hand, the "energy efficiency" (8.13) for the distillation process obtained by defining "useful energy out" as "separation work" is only 5.2%:

-	separation work	W_s^{id}	1.66 kJ/mol = 0.052	
η _{energy} —	heat supply distillation	$\overline{Q_H}$	$\frac{1}{31.8 \text{ kJ/mol}} = 0.052$	

z = mole fraction light component in feed

*Actual energy only 5-10% higher

King's formula:

NTNU

Ideal separation work

• Minimum supplied work (for any process)

$$W_{s,id} = \Delta H - T_0 \Delta S$$

• Assume $\Delta H=0$ for the separation. Minimum separation work

$$W_{s,id}$$
= - $T_0 \Delta S$

• Separation of feed into pure products

$$\Delta S = F R \sum_{i=1}^{N} z_i ln z_i$$

• This is a negative number so the minimuim separation work W_{s,id} is positive!

Thermodynamic efficiency (exergy) for conventional distillation

• Thermodynamic Efficiency =

Ideal work for the separation/Actual work:

Note that T₀ drops out

Thermodynamic efficiency Special case: Binary, constant α

King's formula

$$Q_r = (z + \frac{1}{\alpha - 1})\lambda F$$

 Ideal binary mixture (Claperyon equation) + no pressure drop. King shows:

• So
$$\eta = \frac{W_s^{id}}{W_{s,carnot}} = \frac{-F \sum_{i=1}^{N} z_i \ln z_i}{Q_r \left(\frac{1}{T_C} - \frac{1}{T_H}\right)} \stackrel{\text{Binary}}{=} \frac{-(z \ln z + (1 - z) \ln(1 - z))}{(z + \frac{1}{\alpha - 1}) \ln \alpha}$$

Note that λ drops out

Use:
$$\lim_{\alpha \to 1} \frac{\ln \alpha}{\alpha - 1} = 1 \qquad \lim_{\alpha \to 1} \eta = -(z \ln z + (1 - z) \ln(1 - z))$$

Thermodynamic efficiency of binary close-boiling mixtures ($\alpha \rightarrow 1$)

DNTNU

Fhermodynamic efficiency of binary distillation

$$\eta = \frac{W_s^{id}}{W_{s,tot}} = \frac{-(z \ln z + (1-z)\ln(1-z))}{(z + \frac{1}{\alpha - 1})\ln\alpha}$$

- High efficiency at small z for easy separations with large α
- Reason: Must evaporate light component to get it over top

$$Q_r = \lambda V_{\min} = (z + \frac{1}{\alpha - 1})\lambda F$$

King (1971)

More volatile component in feed, mole fraction

Note: Non-ideality does not necessarily imply lower thermodynamic efficiency

Why is it not perfect – where are the losses?

- Irreversible mixing loss at every stage.
- Largest losses in the middle of each section – where the bulk separation takes place
- Small losses at the highpurity column ends

Reversible binary distillation

Reversible binary distillation

Figure 6.9: Reversible binary distillation: Internal flow rates (L_{rev}, V_{rev}) as function of composition. Minimum flow rates in an adiabatic column are also indicated (L_{min}, V_{min}) . Note that $V_T L_T = D$ and $L_B - V_B = B$

Reversible binary distillation

HIDIC (Heat Integrated Distillation Column)

I have written papers on HIDiC, but don't believe in it.... Too complicated, too much investment, not enough savings

Distillation is unbeatable for high-purity separations

- Operation: Energy usage essentially independent of product purity
- Capital: No. of stages increases with log(impurity)

Fenske: $N_{min} = \ln S / \ln \alpha$ Actual: $N \approx 2.5 N_{min}$ Separation factor: $S \approx \frac{1}{x_{L,B} x_{H,D}}$

OPERATION

Economics and sustainability for operation of distillation columns

Is there a trade-off?

- No, not as long as the column is operated in a region of constant (optimal) stage efficiency
- Yes, if we operate at too high or too load so that the stage efficiency drops

DISTILLATION CONTROL

 Studied in hundreds of research and industrial papers over the last 40 years

Myth of slow control

- Use extra energy because control is poor
- Let us get rid of it!!!

- Compare manual ("perfect operator") and automatic control for typical column:
 - 40 stages,
 - Binary mixture with 99% purity both ends,
 - relative volatility = 1.5
 - First "one-point" control: Control of top composition only
 - Then "two-point" control: Control of both compositions

Myth about slow control One-point control

Figure 12: One-point control of x_D : Response to a 1% step increase (disturbance) in V. Solid line: Simultaneous step increase in L ("perfect operator"). Dashed line: Feedback where L is used to control x_D (PI-settings: $k = 60, \tau_I = 3.6 \text{ min}$)

Myth about slow control One-point control

Figure 12: One-point control of x_D : Response to a 1% step increase (disturbance) in V. Solid line: Simultaneous step increase in L ("perfect operator"). Dashed line: Feedback where L is used to control x_D (PI-settings: $k = 60, \tau_I = 3.6 \text{ min}$)

Myth about slow control One-point control

Figure 12: One-point control of x_D : Response to a 1% step increase (disturbance) in V. Solid line: Simultaneous step increase in L ("perfect operator"). Dashed line: Feedback where L is used to control x_D (PI-settings: $k = 60, \tau_I = 3.6 \text{ min}$)

SO SIMILAR (inputs) ... and yet SO DIFFERENT (outputs)

Myth about slow control Two-point control

x_{DS}. step up \overline{M}_{B} x_{BS} constant "Perfect operator": Steps L and V directly Feedback control: 2 PI controllers Which response is best?

Figure 13: Two-point control: Setpoint change in x_D from 0.99 to 0.995 with x_B constant. Solid line: Simultaneous step increase in L and V to their new steady-state values ("perfect operator"). Dashed line: Feedback control using the LV-configuration with PI-settings in (82).

Myth about slow control Two-point control

Figure 13: Two-point control: Setpoint change in x_D from 0.99 to 0.995 with x_B constant. Solid line: Simultaneous step increase in L and V to their new steady-state values ("perfect operator"). Dashed line: Feedback control using the LV-configuration with PI-settings in (82).

SO SIMILAR (inputs) ... and yet SO DIFFERENT (outputs)

Myth about slow control

Conclusion:

- Experience operator: Fast control impossible
 - "takes hours or days before the columns settles"
- BUT, with feedback control the response can be fast!
 - Feedback changes the dynamics (eigenvalues)
 - Requires continuous "active" control
- Most columns have a single slow mode (without control)
 - Sufficient to close a single loop (typical on temperature) to change the dynamics for the entire column

Complex columns

- Sequence of columns for multicomponent separation
- Heat integration
- Pressure levels
- Integrated solutions
- Non-ideal mixtures (azeotropes)
- Here: Will consider "Petlyuk" columns

Typical sequence: "Direct split"

NTNU

Towards the Petlyuk column

GC – Chemicals Research and Engineering **Dividing Wall Columns** Off-center Position of the Dividing Wall

V_{min}-diagram (Halvorsen)

Petlyuk saves 30-40% energy but may be less efficient in terms of exergy How fix?

Add side cooler or side reboiler : Can see from Vmin diagram!

4-product mixture

Conventional sequence with 3 columns

A – methanol B – ethanol C – propanol D – butanol

Direct optimal extension of Petlyuk ideas requires two divided walls. Will look for something simpler

4-product mixture: Kaibel column

Control of Kaibel column

Close a "stabilizing" temperature (profile) loop for each split

• Prefractionator:

- Close 1 "stabilizing" temperature loop
- •Main column
 - Close 3 "stabilizing" temperature loops

□ NTNU

Conclusion

- Distillation is important
- Distillation is unbeatable (in some cases)
- Distillation is fun
- Distillation is complex yet simple... and vice versa

Romania February 2019

Optimal operation distillation column

- Distillation at steady state with given p and F: N=2 DOFs, e.g. L and V (u)
- Cost to be minimized (economics)
- / cost energy (heating+ cooling)

$$J = -P \text{ where } P = p_D D + p_B B - p_F F - p_V V$$

- value products cost feed Constraints F, z_F Purity D: For example $x_{D, impurity} < max$ Purity B: For example, x_{B, impurity} < max Flow constraints: min < D, B, L etc. < max $B, x_{\mathbf{R}}$ Column capacity (flooding): $V < V_{max}$, etc. Pressure: p has given setpoint (can be given up, but need $p_{min})$ Feed: F has given setpoint (can be given up)
- Optimal operation: Minimize J with respect to steady-state DOFs (u)

Operation of Distillation columns in series

With given F (disturbance): 4 steady-state DOFs (e.g., L and V in each column)

Ref.: M.G. Jacobsen and S. Skogestad (2011)

45

1. Always. 2. For low energy prices.

Control of Distillation columns in series

QUIZ 2. Assume low energy prices (pV=0.01 \$/mol) How should we control the columns? HINT: CONTROL ACTIVE CONSTRAINTS

SOLUTION QUIZ 2

Control of Distillation columns in series

QUIZ 2. Assume low energy prices (pV=0.01 \$/mol) How should we control the columns? HINT: CONTROL ACTIVE CONSTRAINTS

Solution.

Control of Distillation columns. Cheap energy

Comment: Distillation column control in practice

- 1. Add stabilizing temperature loops
 - In this case: use reflux (L) as MV because boilup (V) may saturate
 - T_{1s} and T_{2s} then replace L_1 and L_2 as DOFs.
- 2. Replace V1=max and V2=max by DPmax-controllers (assuming max. load is limited by flooding)
- See next slide

Comment: In practice

Control of Distillation columns in series

More on: Optimal operation

minimize J = cost feed + cost energy – value products

Two main cases (modes) depending on marked conditions:

Mode 1. Given feedrate Mode 2. Maximum production

Comment: Depending on prices, Mode 1 may include many subcases (active constraints regions)

Acknowledgement

• Ivar Halvorsen, NTNU (20%) and SINTEF (80%)

$$\alpha \approx \exp\left[\frac{\Delta_{\rm vap}H}{RT_b}\cdot \frac{T_{bH}-T_{bL}}{T_b}\right]$$

Thermodynamic efficiency for conventional distillation

 Use heat pumps for reboiler and condenser. Ideal work with surroundings at T₀ (Carnot):

$$W_r = Q_r (1 - \frac{T_0}{T_H})$$
 $W_c = Q_c (1 - \frac{T_0}{T_C})$

• Assume feed liquid and constant molar flows so $Q_c \approx -Q_r$

$$W_{s,tot} = W_r + W_c = Q_r T_0 (\frac{1}{T_c} - \frac{1}{T_H})$$

• Thermodynamic Efficiency = **Ideal** work/Actual work:

$$\eta = \frac{W_s^{id}}{W_{s,tot}} = \frac{-FRT_0 \sum_{1}^{N} z_i \ln z_i}{Q_r T_0 (\frac{1}{T_C} - \frac{1}{T_H})}$$

