Optimal Operation and Stabilising Control of the Concentric Heat-Integrated Distillation Column (HIDiC)

Thomas Bisgaard¹, Jakob K. Huusom¹, Sigurd Skogestad², Jens Abildskov¹

¹CAPEC-PROCESS Research Centre, DTU

²Process Systems Engineering, NTNU

Outline

DTU

Introduction

- Heat-Integrated Distillation
- Motivation

Control Structure Design

- Degrees of Freedom
- Top-Down Analysis: Selection of Economic CVs (CV1)
- Bottom-up Analysis: Stabilising Control Scheme
- Economic Control
- Dynamic Model
- Case Study I: Benzene/toluene
- Case Study II: Multicomponent Aromatics
- Conclusion
- References
- Other Activities

Introduction Distillation Concepts

Conventional Distillation

Heat-pump Assisted Distillation

Diabatic Distillation

Introduction The Heat-Integrated Distillation Column (HIDiC)

DTU

Example of HIDiC realisation: The concentric HIDiC

Introduction Motivation

- Distillation has a reputation of being an energy consuming and energy inefficient separation technique
- Yet, it is the most common method of separating liquid mixtures
- It is estimated that 40,000 distillation columns are currently in operation¹
- Significant energy savings are reported in simulation and experimental studies of heat-integrated distillation configurations

J Chem Technol Biotechnol, 89(4):479-498, 2013

¹A.A. Kiss. Distillation technology-still young and full of breakthrough opportunities.

DTU

Problem definition:

- Design a regulatory (stabilising) control layer
- Design a supervisory (economic) control layer
- Ultimately: Formulate a design method of the above items using a systematic method²

Results:

- DYCOPS 2016 3
- Manuscript in preparation ⁴

²T. Larsson and S. Skogestad. Plantwide control-a review and a new design procedure. *Model Ident Control*, 21(4):209–240, 2000

³T. Bisgaard, S. Skogestad, J.K. Huusom, and J. Abildskov. Optimal operation and stabilising control of the concentric heat-integrated distillation column.

¹¹th IFAC International Symposium on Dynamics and Control of Process Systems - Trondheim, Norway, 2016

⁴T. Bisgaard, S. Skogestad, J.K. Huusom, and J. Abildskov. Optimal operation and stabilising control of the concentric heat-integrated distillation column (hidic). 2016

Control Structure Design Control Hierachy

- · Process optimisation:
 - Ensure optimal performance
- Supervisory control:
 - Economic control
 - Typically gives set points to regulatory layer
- Regulatory control:
 - Stabilise plant
 - Provides fast control
 - Actuators (valves)
- Plant
 - Responses take place and some are measured

Control Structure Design Degrees of Freedom Analysis

Control degrees of freedom:

 $DOF_{control} = N_{valves} = 7$ (Six valves and the compressor) Number of steady state DOF becomes:

$$DOF_{ss} = N_{valves} - N_{y0} - N_{u0} = 7 - 3 - 0 = 4$$
 (1)

Optimal operation:

$$\begin{split} \min_{\mathbf{u}_s} J &= S_F(\mathbf{z}) m_F - S_D(\mathbf{x}_D) m_D - S_B(\mathbf{x}_B) m_B \\ &+ S_{steam} m_{steam} + S_{cw} m_{cw} + S_{electricity} E \end{split} \tag{2}$$
s.t. $x_{D,imp} \leq x_{D,imp,max}$ $x_{B,imp} \leq x_{B,imp,max}$ $P_{min} \leq P_i \leq P_{max} \quad i = 1, 2, \dots, N_S$ $L_{min} \leq L_i \leq L_{max} \quad i = 1, 2, \dots, N_S - 1$ $V_{min} \leq V_i \leq V_{max} \quad i = 2, 3, \dots, N_S$ $0 \leq E \leq E_{max}$ with $\mathbf{u}_s = [P_{str}, CR, L_{cnd}, Q_{rbl}]$

• Active constraints? $P_{str} = P_{min}$? $L_{cnd} = L_{min}$?

Identification of CV_2 's⁵ and pairing with MV's:

CV_2		Indicator	u	Valve
Temperature profile	ΔT	DTI-1/DTI-2	Q_{cnd}	V-3
Stripping section pressure	P_{str}	PI-2	Q_{rbl}	V-5
Rectification section pressure	P_{rct}	PI-1	E	V-3
Condenser holdup	M_{cnd}	LI-1	D	V-2
Rectification section holdup	M_{rct}	LI-2	L_{rct}	V-6
Stripping section (reboiler) holdup	M_{rbl}	LI-3	B	V-4
No dry spots (if L_{min})	L_{cnd}	FI-1	L_{cnd}	V-1

Chem Eng Res Des, 85(A1):13-23, 2007

⁵S. Skogestad. The dos and don'ts of distillation column control.

Control Structure Design Bottom-up Analysis: Stabilising Control Scheme

Distillate more valuable.

DTU

Bottoms more valuable.

- Supervisory control layer design
- Purpose: Keep (primary) controlled outputs at optimal setpoints, using
 - setpoints for the regulatory layer
 - any unused manipulated variables
- Decentralised or multivariable control?
- Coordination (e.g. for multiple active constraint regions)?

- A more elaborate model documentation and solution procedure is presented in previous work⁶
- The key features of the model are:
 - Equilibrium-stage model (ideal vapour phase)
 - Time-varying tray pressure drops
 - Liquid hydraulics $L = f(H_{oW}, \ldots)$
 - Vapour hydraulics $V = f(\Delta P, \ldots)$

⁶T. Bisgaard, J.K. Huusom, and J. Abildskov. Modeling and analysis of conventional and heat-integrated distillation columns. AIChE Journal, 61(12):4251–4263, 2015

Case Study I: Benzene/toluene Nominal Optimal Operating Point

	Variable	Unit	Configuration	
			CDiC	HIDiC
Design degrees of freedom	P_{str}	kPa	101.3	101.3
	$C\!R$	-	-	2.306
	L_{cnd}	${ m mol}{ m s}^{-1}$	60.15	0.8333
	Q_{rbl}	kW	3304	1175
Cost function	J	$\mathrm{\$s^{-1}}$	-3.068	-3.081
Constraints (bold: red)	x_D	-	0.9900	0.9900
	$1 - x_B$	-	0.9987	0.9900
	$\min L_i$	${ m mol}{ m s}^{-1}$	55.66	0.8333
	$\max L_i$	${ m mol}{ m s}^{-1}$	141.8	136.9
	$\min V_i$	${ m mol}{ m s}^{-1}$	97.69	35.3
	$\max V_i$	${ m mol}{ m s}^{-1}$	102.2	113.1
	$\min P_i$	kPa	101.3	101.3
	$\max P_i$	kPa	135.8	234.0
	E	kW	-	357.6

Case Study I: Benzene/toluene Nominal Optimal Operating Point

Case Study I: Benzene/toluene Active constraint Regions – Optimal Operation During Disturbances

Case Study I: Benzene/toluene Control Configuration

Legend: Regulatory control layer Supervisory control layer

Case Study I: Benzene/toluene Responses to +25% feed flow rate step change

DTU

Case Study II: Multicomponent Aromatics Separation and Design Formulation

- Multicomponent mixture of aromatics⁷:
 - C7 fraction: 0.5% (toluene)
 - C8 fraction: 60.5% (ethylbenzene, p-xylene, m-xylene, o-xylene)
 - C9 fraction: 39.0% (cumene, n-propylbenzene, m-ethyltoluene, 1,2,3-trimethylbenzene)
- Desired:
 - $\bullet \leq 0.7\%$ C9 in top
 - $\bullet \leq$ 1.5% C8 in bottoms
- 30+25 trays
- 22.6 m² heat transfer area per tray
- Assume: Bottom product more valuable

Proceedings of Distillation and Absorption, pages 57-63, 2014

⁷ T. Wakabayashi and S. Hasebe. Higher energy saving with new heat integration arrangement in heat integrated distillation column (hidic).

Case Study II: Multicomponent Aromatics Control Configuration

Legend: Regulatory control layer Supervisory control layer

DTU

Case Study II: Multicomponent Aromatics Response to +10% feed C8 content step change

DTU

The following main conclusions can be extracted:

- Importance of regulatory control layer
- Few active constraint regions for realistic disturbance scenario
- Complex dynamic behaviour (e.g. inverse responses)
- Good performance of decentralised control
- Temperature difference control provides sufficient pressure compensation if both column section pressures are controlled

References References

- T. Bisgaard, J.K. Huusom, and J. Abildskov. Modeling and analysis of conventional and heat-integrated distillation columns. AIChE Journal, 61(12):4251–4263, 2015.
- [2] T. Bisgaard, S. Skogestad, J.K. Huusom, and J. Abildskov. Optimal operation and stabilising control of the concentric heat-integrated distillation column. 11th IFAC International Symposium on Dynamics and Control of Process Systems – Trondheim, Norway, 2016.
- [3] T. Bisgaard, S. Skogestad, J.K. Huusom, and J. Abildskov. Optimal operation and stabilising control of the concentric heat-integrated distillation column (hidic). 2016.
- [4] A.A. Kiss. Distillation technology-still young and full of breakthrough opportunities. J Chem Technol Biotechnol, 89(4):479–498, 2013.
- [5] T. Larsson and S. Skogestad. Plantwide control-a review and a new design procedure. Model Ident Control, 21(4):209–240, 2000.
- [6] S. Skogestad. The dos and don'ts of distillation column control. Chem Eng Res Des, 85(A1):13-23, 2007.
- [7] T. Wakabayashi and S. Hasebe. Higher energy saving with new heat integration arrangement in heat integrated distillation column (hidic). Proceedings of Distillation and Absorption, pages 57–63, 2014.

Optimal Operation and Stabilising Control of the Concentric Heat-Integrated Distillation Column (HIDiC)

Thomas Bisgaard¹, Jakob K. Huusom¹, Sigurd Skogestad², Jens Abildskov¹

¹CAPEC-PROCESS Research Centre, DTU

²Process Systems Engineering, NTNU

