Fluid data consistency testing incorporation into the ThermoDataEngine

Vladimir Diky², John O'Connell¹*, Jens Abildskov³, Kenneth Kroenlein², Michael Frenkel²

¹ Professor Emeritus, University of Virginia, Nipomo, CA ² National Institute of Standards and Technology, Boulder, CO ³CAPEC-PROCESS, Technical University of Denmark, Lyngby, DK

Thermophysical Property Data

- Present in most separation models
- Quality of great concern

> Literature:

- Andrew R. Nelson, Jon E. Olson, Stanley I. Sandler, 1983. "Sensitivity of Distillation Process Design and Operation to VLE Data", Ind. Eng. Chem. Process Des. Dev., 22(3), 548.
- Wallace B. Whiting, 1996. "Effects of Uncertainties in Thermodynamic Data and Models on Process Calculations", J. Chem. Eng. Data, 41, 935-941.
- Paul M. Mathias, 2014. "Sensitivity of Process Design to Phase Equilibrium A New Perturbation Method Based Upon the Margules Equation", J. Chem. Eng. Data 2014, 59, 1006–1015.

Enhanced rate(s) of publication creates new challenges

Thermophysical Property Data

- Amount doubles each decade
- ~30% papers contain errors in values, metadata, & uncertainties
- Errors propagate & cause damage in analyses & models
- > Data validation essential in critical evaluation to:
 - Identify questionable data
 - Prevent erroneous use
 - Increase "value" of
 - Information about accuracy & reliability
 - Knowledge to enforce consistency among properties
 - Wisdom to reliably support applications
- > NIST ThermoData Engine (TDE) implements methods

Liquid Volumetric Data

- No rigorous consistency test (e.g., Gibbs-Duhem Equation used for partial molar properties)
- Validation currently involves finding:

Outliers via

- Examining trends (e.g., density vs. pressure)
- Comparing independent measurements
- Systematic issues via models
 - Compressed liquids: e.g., Tait model or multiparameter EOS
 - Unsatisfactory if no theoretical basis or too many parameters
- Present work describes successful use of 3-parameter Corresponding States Model for
 - > Densities > 1.5 $\rho_{critical}$
 - > Temperatures $< T_{critical}$

Correlation of Reduced Bulk Modulus

Reduced Bulk Modulus, B, related to integral, C, of molecular direct correlation function, c, (DCFI)

$$B \equiv \frac{\partial P / RT}{\partial \rho} \bigg|_{T,\mathbf{x}} = \frac{1}{\rho \kappa_T RT} = 1 - \rho \int c(r;T,\rho) d\mathbf{r} \equiv 1 - C$$

Corresponding States Correlation for C (Huang, 1987)

Pressure-Density Model

> Pressure-density relation from integrating B $\frac{P - P_0}{RT} = \int_{\rho_0}^{Q} \sum_{i} \sum_{j} x_i x_j \left[1 - C_{ij} \left(T, \rho, \{x\} \right) \right] d\rho$

▷ Given *T*, *P*, **x**, find *p* from standard state of P^0 , ρ^0 for pure or mixed liquid at low P^0

Most reliable current ⁴⁰ model 30

T = 373 K

Background. Xe with REFPROP⁺

(00/6)

Uensity

Xe data:

- Streett W. et al. (J. Chem. Thermodynamics, 1973): Greatest deviations from REFPROP predictions
- Similar deviation from REFPROP EOS for high-pressure supercritical data (Michels et al., Physica (Amsterdam), 1954, 20: 99)

:3 one or the other is erroneous

Streett W. et al.: ImpeccableMichels: World standard.

EOS (Huang/O'Connell, 1987): - Streett et al. > REFPROP

Sending reliable data, but wanting to see if we picked up that REFPROP is not so good, though smooth

REFPROP is easier to over-train!

⁺Lemmon E.W., Jacobson R.T., 2005. J. Phys. Chem. Ref. Data, Vol. 34(1)

Discrepancy showed up as we might hope!

Examples I. Accurate Data

(

Examples II. Erroneous Data

Examples IIIa. Publishing Typos

Examples IIIb. Publishing Typos

Examples IV. Multiphase Data

Examples V. Model Inadequacy

Summary

Criteria

- Low adequacy function, $Q = N^{-1}\Sigma w_i (p_{calc} p_{exp})_i^2$
- P(p) must be monotonically increasing
- Abnormal parameter values ($T_i^* \approx T_{ci}^*$; $V_i^* \approx V_{ci}^*$ /3; $C_i^* < 0$)

Detections

- High quality work compromised by errors in manuscript preparation
- Single phase data mixed with multiphase data
- Adequacy to represent data of sufficient quality

Conclusions

- Liquid density data validation established
 - Based on CSP formulation of reduced bulk modulus
 - Allows uncovering of variety of errors
 - Random & systematic measurement errors
 - Textural & typographical reporting errors
- Implemented in NIST TDE software (trc.nist.gov/tde.html)

References:

- Original CSP model Huang & O'Connell Fluid Phase Equil. 1987, 37, 75-84
- Applied to ionic liquids Abildskov, et al. Fluid Phase Equil. 2010, 295, 215-229
- TDE implementation Diky, et al. J. Chem. Eng. Data ASAP 2015, DOI: 10.1021/acs.jced.5b00477