

Direct Air Capture of carbon dioxide EFCE WP on Fluid Separations 19 June 2019, Gothenberg, Sweden

Richard Darton Department of Engineering Science University of Oxford

Acknowledgements

Natural Environment Research Council, UK Grant NE/P01982X/1 RC Darton and A Yang *Removing greenhouse gases from the air to stabilise the climate* in Advances in carbon management technologies SK Sikdar and F Princiotta, eds, CRC Press to be published in 2020

Direct Air Capture of carbon dioxide

- Motivation and options
- Energy needs
- Innovation leads
- Conclusions

3 From: Eelco J Rohling 2019, *The Climate Question*, Oxford University Press Fig 2.1

CO₂ in the air: the 2°C scenario

Source: UNEP 2017. The Emissions Gap Report 2017. United Nations Environment Programme (UNEP), Nairobi

Removing carbon dioxide from air

- Target amount by the year 2100: 810* Gt (range 440-1020). UNEP
- How do we capture it?
- Where do we store it?

* 220 Gt carbon (=810*12/44)

+ Sedimentary rocks 100 000 000 Gt C (estimated)

Diagram adapted from U.S. DOE, Biological and Environmental Research Information System

6

CO2 captured from air by photosynthesisCO2 captured from air by abiotic sorbentPlants on land(1a) Afforestation and forest management (1b) Wetlands, peatlands and coastal ecosystem restoration and management(2) DAC, using regenerable solid or liquid sorbent to produce CO2-enriched air for improving agricultural yield – e.g. tomatoesSoil(3) Increasing soil carbon by land management: Soil carbon sequestration (4) Biochar (from biomass pyrolysis)(5) Enhanced Weathering (EW) of rock particles scattered on soilAbove ground as mineral(6) Biomass combustion to release energy with mined mineral or suitable waste (BECCS)(7) Mineral Carbonation reacting either air, or CO2-enriched air (flue gas or DAC) with mined (processed) mineral or suitable waste (BECCS)Below ground as compressed CO2(8) Following biomass combustion to release energy, with flue gas treating and injecting CO2 to react in rock such as silicate or basalt (BECCS)(10) Biomass combustion to release energy, with flue gas treating to produce high purity CO2 for underground storage (BECCS)(11) DAC to produce high purity CO2 for underground storage (DACCS)Ocean growth of marine biota(12) As (10), with CO2 dispersed into the ocean, or injected at a depth where it is not buoyant (13) Ocean Fertilization (OF) to stimulate growth of marine biota(14) As (11), with ocean storage of CO2 (15) Ocean Liming. Calcination of carbonate rock with CCS. Lime distributed at sea rock with CCS. Lime distributed at sea (17) Chemicals and products from biomass(18) DAC, then utilizing produced CO2 as feedstock for chemical products (CCU)			
Plants on land(1a) Afforestation and forest management (1b) Wetlands, peatlands and coastal ecosystem restoration and management(2) DAC, using regenerable solid or liquid sorbent to produce CO2-enriched air for improving agricultural yield - e.g. tomatoesSoil(3) Increasing soil carbon by land management: Soil carbon sequestration (4) Biochar (from biomass pyrolysis)(5) Enhanced Weathering (EW) of rock particles scattered on soilAbove ground as mineral(6) Biomass combustion to release energy with mined mineral or suitable waste (BECCS)(7) Mineral Carbonation reacting either air, or CO2-enriched air (flue gas or DAC) with mined (processed) mineral or suitable wasteBelow ground as mineral(8) Following biomass combustion to release energy, with flue gas treating and injecting CO2 to react in rock such as silicate or basalt (BECCS)(9) Following DAC, injecting CO2 to react in rock such as silicate or basalt (DACCS)Below ground, as compressed CO2 to react in rock such as silicate or basalt (BECCS)(11) DAC to produce high purity CO2 for underground storage (BECCS)Ocean(12) As (10), with CO2 dispersed into the ocean, or injected at a depth where it is not buoyant (13) Ocean Fertilization (OF) to stimulate growth of marine biota(14) As (11), with ocean storage of CO2 (15) Ocean Liming. Calcination of carbonate rock with CCS. Lime distributed at sea feedstock for chemical products (CCU)Human environment(16) Buildings made with wood and similar biomaterials (17) Chemicals and products from biomass(18) DAC, then utilizing produced CO2 as feedstock for chemical products (CCU)		CO ₂ captured from air by photosynthesis	CO ₂ captured from air by abiotic sorbent
Soil(3) Increasing soil carbon by land management: Soil carbon sequestration (4) Biochar (from biomass pyrolysis)(5) Enhanced Weathering (EW) of rock particles scattered on soilAbove ground as mineral(6) Biomass combustion to release energy with CO2 captured from flue gas and reacted with mined mineral or suitable waste (BECCS)(7) Mineral Carbonation reacting either air, or 	Plants on land	(1a) Afforestation and forest management(1b) Wetlands, peatlands and coastal ecosystem restoration and management	(2) DAC, using regenerable solid or liquid sorbent to produce CO ₂ -enriched air for improving agricultural yield – e.g. tomatoes
Above ground as mineral(6) Biomass combustion to release energy with CO2 captured from flue gas and reacted with mined mineral or suitable waste (BECCS)(7) Mineral Carbonation reacting either air, or CO2-enriched air (flue gas or DAC) with mined (processed) mineral or suitable wasteBelow ground as mineral(8) Following biomass combustion to release energy, with flue gas treating and injecting CO2 to react in rock such as silicate or basalt (BECCS)(9) Following DAC, injecting CO2 to react in rock such as silicate or basalt (DACCS)Below ground, as compressed CO2 to react in rock such as silicate or basalt (BECCS)(11) DAC to produce high purity CO2 for underground storage (DACCS)Ocean(12) As (10), with CO2 dispersed into the ocean, or injected at a depth where it is not buoyant (13) Ocean Fertilization (OF) to stimulate growth of marine biota(14) As (11), with ocean storage of CO2 (15) Ocean Liming. Calcination of carbonate rock with CCS. Lime distributed at seaHuman environment(16) Buildings made with wood and similar biomaterials (17) Chemicals and products from biomass(18) DAC, then utilizing produced CO2 as feedstock for chemical products (CCU)	Soil	(3) Increasing soil carbon by land management:Soil carbon sequestration(4) Biochar (from biomass pyrolysis)	(5) Enhanced Weathering (EW) of rock particles scattered on soil
Below ground as mineral(8) Following biomass combustion to release energy, with flue gas treating and injecting CO2 to react in rock such as silicate or basalt (BECCS)(9) Following DAC, injecting CO2 to react in rock such as silicate or basalt (DACCS)Below ground, as compressed CO2(10) Biomass combustion to release energy, with flue gas treating to produce high purity CO2 for underground storage (BECCS)(11) DAC to produce high purity CO2 for underground storage (DACCS)Ocean(12) As (10), with CO2 dispersed into the ocean, or injected at a depth where it is not buoyant (13) Ocean Fertilization (OF) to stimulate growth of marine biota(14) As (11), with ocean storage of CO2 (15) Ocean Liming. Calcination of carbonate rock with CCS. Lime distributed at seaHuman environment(16) Buildings made with wood and similar biomaterials (17) Chemicals and products from biomass(18) DAC, then utilizing produced CO2 as feedstock for chemical products (CCU)	Above ground as mineral	(6) Biomass combustion to release energy with CO ₂ captured from flue gas and reacted with mined mineral or suitable waste (BECCS)	(7) Mineral Carbonation reacting either air, or CO ₂ -enriched air (flue gas or DAC) with mined (processed) mineral or suitable waste
Below ground, as compressed CO2(10) Biomass combustion to release energy, with flue gas treating to produce high purity 	Below ground as mineral	(8) Following biomass combustion to release energy, with flue gas treating and injecting CO ₂ to react in rock such as silicate or basalt (BECCS)	(9) Following DAC, injecting CO_2 to react in rock such as silicate or basalt (DACCS)
Ocean(12) As (10), with CO2 dispersed into the ocean, or injected at a depth where it is not buoyant (13) Ocean Fertilization (OF) to stimulate growth of marine biota(14) As (11), with ocean storage of CO2 (15) Ocean Liming. Calcination of carbonate rock with CCS. Lime distributed at seaHuman environment(16) Buildings made with wood and similar biomaterials (17) Chemicals and products from biomass(18) DAC, then utilizing produced CO2 as feedstock for chemical products (CCU)	Below ground, as compressed CO ₂	(10) Biomass combustion to release energy, with flue gas treating to produce high purity CO ₂ for underground storage (BECCS)	(11) DAC to produce high purity CO ₂ for underground storage (DACCS)
Human environment(16) Buildings made with wood and similar biomaterials (17) Chemicals and products from biomass(18) DAC, then utilizing produced CO2 as feedstock for chemical products (CCU)	Ocean	 (12) As (10), with CO₂ dispersed into the ocean, or injected at a depth where it is not buoyant (13) Ocean Fertilization (OF) to stimulate growth of marine biota 	(14) As (11), with ocean storage of CO ₂ (15) Ocean Liming. Calcination of carbonate rock with CCS. Lime distributed at sea
	Human environment	(16) Buildings made with wood and similar biomaterials (17) Chemicals and products from biomass	(18) DAC, then utilizing produced CO ₂ as feedstock for chemical products (CCU)

Energy needs of Direct Air Capture

$$\frac{w_{rev}}{RT_0} = \ln \frac{\alpha}{\beta + (\alpha - \beta)y_c} + \frac{\beta(1 - y_c)}{\alpha y_c} \ln \frac{\beta}{\beta + (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \alpha}{1 - \beta - (\alpha - \beta)y_c} + \frac{(1 - \beta)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \beta)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \beta)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \beta)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c} + \frac{(1 - \alpha)}{\alpha} \ln \frac{1 - \beta}{(1 - \beta) - (\alpha - \beta)y_c$$

 w_{rev} = reversible work of separation per unit CO₂ x_c = mol fraction CO₂ in feed α = fraction CO₂ recovered as product β = fraction inert slipping into product

R is the gas constant, and T_0 the temperature

Reversible work of separation of CO_2 from air

Actual heat requirement

Air capture ~ 21 MJ/kmol reversible work

Effncy η = Separation work/Heating $\eta_{Carnot} = (T_H - T_C)/T_H = w_{rev}/Q_{sep}$ Say ~ 1/6 for amine treating or similar process, and Actual efficiency ~1/12 \rightarrow 1/18 This seems to be quite usual for separation processes

DAC might take ~ 250 to 380 MJ/kmol *heat* Note: enthalpy of formation of $CO_2 = (-)393.5$ MJ/kmol

Actual heat requirement

Heat/reversible work for CO2 capture from air and flue gas

Flue Gas Capture data from B Metz et al, 2005 IPCC Special report on CCS. CUP

11

Reversible work of separating pure CO_2 ($\beta = 0$) from gas at $T_0 = 293$ K. Parameter α is the fraction of inlet CO_2 recovered in the product. Penalties shown are the additional reversible work needed to capture CO_2 from air rather than flue gas, for natural gas firing ($y_c = 0.04$) and coal firing ($y_c = 0.12$), for $\alpha = 1.0$.

This penalty is payable as soon as the flue gas exits the chimney stack!

Innovation leads

- Novel solvents, adsorbents, process line-ups, tailored to CO₂ capture from air – use waste heat?
- React CO_2 with alkaline minerals \rightarrow no sorbent & no underground storage of liquid CO_2
- Use sunshine grow crops: eg BECCS needs CO₂ storage
- Electrochemistry
- Novel power plant: eg OrigenPower integrates fuel cell with calciner → Electricity + CO₂ to storage.
- Reafforestation and better agricultural practices to draw down and store carbon in soil
- **Above all decarbonise as quickly as possible**

Conclusions

The "2°C scenario" implies at least THREE huge new industries this century:

- Renewable energy
- Flue Gas Capture of CO₂
- CO₂ removal from air
- CO_2 capture needs to be explored now, to
- Develop new technology and business options
- Inform policy. New policy and response options, evidence-based.