CHALMERS

UNIVERSITY OF TECHNOLOGY

Modified surfaces to enhance vertical falling film heat transfer

Anders Åkesjö

Vertical falling film

- A liquid film with a distinct interface flowing down a vertical wall.
- Low residence time and a large contact area
- Used in varies fields.
- Limited knowledge about dynamics within the liquid film.

h_s ≈ 1800 W/(m²K)

Playback:

1/12 x

CHALMERS

Introducing surface modifications

 Idea: Disturb the flow pattern to cause more bulk mixing

Playback: 1/12 x

Experimental Results

- Chaotic flow pattern
- Thicker liquid film
- Significantly higher heat transfer

CHALMERS UNIVERSITY OF TECHNOLOGY

-0

Conclusions

- The heat transfer coefficient can be significantly enhanced with the introduction of surface modifications.
- The enhancement works for both heating and evaporative conditions and at large scale.
- The enhancement appears to be caused by time-dependent recirculation zones behind the surface modifications.

Thank you for your attention!

Anders Åkesjö