A Contribution to Chemical Process Operation Support: New Machine
Learning and Surrogate Models-Based Approaches for Process
Optimization, Supervision and Control

By Ahmed Shokry Abdelaleem Taha Zied

Host Department of Chemical Engineering, Escola d'Enginyeria de Barcelona Est — EEBE,
Universitat Politécnica de Catalunya — UPC

Activity period December 2015- May 2021

Email ahmed.shokry@polytechnique.edu
Advisor Prof. Antonio Espuna
Full thesis is https://lupcommons.upc.edu/handle/2117/349568
available at
Abstract

In the chemical process industry, the decision-making hierarchy is inherently model-based. The scale
and complexity of the considered models (e.g., enterprise, plant or unit model) depend on the decision-
making level (e.g., planning, scheduling, operation) and the allowable time slot (hours, seconds) within
which model simulation/optimization runs must be performed and their output analyzed to support the
decision making. The use of high-fidelity models, which include detailed physics-based description of
the process, is attracting wide interest of the process engineers. Since, these First Principle Model (FPMs)
are able to accurately predict the behavior of the process, leading to realistic optimal decisions.
However, their use is hindered by practical challenges as the high computational time required for their
simulation and the unguaranteed reliability of their consistent convergence. The challenges become
prohibitive at lower levels of the decision-making hierarchy (i.e., operation), where decisions are
required online within time slots of minutes or seconds, entailing lots of simulation runs using complex
and highly nonlinear FPMs. Machine Learning (ML) and Surrogate modelling techniques are potential
solution for these challenges, which rely on developing simplified, but accurate, data-driven or machine
learning models using data generated by FPM simulations, or collected from a real process. This Thesis
presents a framework for the proper and effective use of surrogate models and ML techniques in
different phases of the process operation. The objective is to provide efficient methodologies, each
supporting the decision making in a specific phase of the process operation, namely; steady-state
operation optimization, Model Predictive Control (MPC), multivariate system identification and
multistep-ahead predictions, dynamic optimization, Fault Detection and Diagnosis (FDD) and soft-
sensing.

1 Context & challenges

Process operation is an important layer in the decision-making hierarchy of chemical plants management. It
receives, as inputs, the outcomes and decisions coming from higher level layers (i.e., scheduling), such as
forecasts of prices and demands, and production rate targets over long time periods[1]. Then, the process
operation optimization layer provides as output: i) the real-time optimal values of the process variables
(pressures, temperatures, etc.) at which the plant must operate to achieve the required performance, considering
quality, safety and environmental restrictions and, more importantly, reacting to sudden and unexpected
variations of the process or external uncertainties (e.g., demand), ii) detailed and timely orders to the basic
equipment control systems to implement actions to maintain the plant units functioning at these set-points (or
reference trajectories) against expected disturbances and iii) timely information about the process functionality
state, i.e., if it is functioning under normal or abnormal conditions, and about the possible type of fault that

impacts the process leading to these abnormal conditions [2].
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Figure 1. Process operation modules (right) and associated process model scales (left)).

Figure 1 sketches the main modules/tasks required for such functionalities, their usual activation sequence and

the scales of the process models considered in each module.

1.1 Steady-state optimization

Context: Steady-State Optimization (SSO) aims at obtaining the optimal values of the process variables at which

the plant must operate to maximize certain performance criteria and satisfy all requirements, by solving, in real

time, an optimization problem based on a detailed and rigorous steady-state model of the process. On another



hand, the presence of uncertainty sources in the system is unavoidable, including process-inherent (e.g., feed
stream properties) and external uncertainties (e.g., demands) [3, 4]. To handle these types of uncertainty in SSO,
reactive approaches are preferred, because they are able to promptly provide online update of the optimal values
of the decision variables in response to real-time changes of the uncertain parameters value. Among the reactive
methods, Multi-Parametric Programming (MPP) offers outstanding capabilities [5], since its solution provides
simple mathematical functions mapping the optimal decisions over the entire space of the uncertain parameters.
Hence, the optimal decisions can be immediately calculated by these functions avoiding huge computational cost
required by repetitive optimization. There is a growing interest in using high-fidelity models of the process based
on “first principles” (FPMs) in the SSO [6]. However, their development is a challenging task due to the required
deep knowledge, effort and time. As a result, specialized simulation software tools have been developed to

model such complex processes, e.g., Aspen [7].

Challenge 1: FPMs may pose many practical obstacles when they are used for SSO [8, 9], such as high

nonlinearity, complex architectures, expensive computational cost, and noisy calculations [7].

Challenge 2: application of the most efficient reactive approaches (e.g.:, MPP) to handle uncertainty is not

always possible, since it requires a well-constructed white-box model of the process [10].

1.2 Dynamic optimization

Context: for transient situations of continuous processes and also for batch processes, dynamic optimization is,
instead, carried out relying on a dynamic FPM of the process [11]. It identifies, in a fast and accurate way, the
optimal time-profiles of the control variables that must be applied over a specific period of time in order to drive
the process to the required state at the end of this period [12]. Direct methods have been widely used for solving
dynamic optimization problems, which are classified according to the variables to be discretized [11]. Control
Vector Parameterization (CVP)) approach discretizes only the control variables and then a NonLinear
Programming (NLP) problem is carried out in the space of the discretized control variables. Simultaneous
approach discretizes both control and state variables resulting in a large-scale NLP problem [12]. CVP approach

is straightforward and easy to implement, resulting in a NLP problem of a much reduced size [11].

Challenge 3: the CVP approach requires a large number of evaluations of the FPM, where each evaluation
implies the integration of this model using expensive integration techniques [12]. Which, again, can result in a

huge computational effort.

1.3 Model predictive control

Context: after obtaining the optimal set-points of the plant, they are sent to the supervisory control module that
holds the plant operating at these set-points against expected fluctuations. Model Predictive Control (MPC) is,
nowadays, the backbone of the supervisory control modules in chemical industries [5], as they offer efficient
capabilities such as handling multivariable processes and constraints on the state and control variables [5]. In the
MPC scheme, an online dynamic optimization problem is solved at each sampling period, based on a dynamic
model of the process. Firstly, the dynamic model is updated by the current real measurements of the state/output
variables representing the initial conditions [13]. Secondly, the dynamic optimization problem is solved to find
the optimal profile of the control variables over the entire prediction horizon [10]. Then, only the first values of

the calculated optimal control profile are implemented in the plant, and so on.



Challenge 4: solution of a dynamic optimization problem at each sampling period implies repetitive evaluation
of the process model. This could require time larger than the sampling period, which makes the MPC application

useless [5].

1.4 Dynamic modelling

In most control, monitoring and supervision modules, an accurate dynamic model of the process is a must [22].

Challenge 5: in frequent situations, accurate dynamic FPMs are complex and computationally expensive, while

in other cases they are not attainable and only the process measurement data are available.

1.5 Fault detection and diagnosis

Context: a fault is an unexpected change in the process behavior that hampers the process normal operation,
causing unacceptable deterioration of its performance. A Fault Detection and Diagnosis (FDD) system performs
two functions: detecting the fault occurrence and, then, diagnosing its type [14]. This guarantees the safety,
reliability and availability of the plant by avoiding sudden shutdowns and breakdowns [15]. Model-based FDD
methods rely on monitoring the matching between the actual process measured features and the corresponding
normal features estimated by a dynamic state-space FPM (an observer). This results in error signals whose

values can be used to detect and diagnose faults [16].

Challenges 6: model-based FDD methods are applicable to processes of low nonlinearity and dimensionality.
Therefore, their accuracy is reduced when applied to highly nonlinear processes, while their applications to

large-scale processes result in a high number of observers that require an unaffordable computational effort [17].

1.6 Soft-sensing

Context: most of the process operations modules require the real-time measurements of the process variables.
But, for what called Quality Indicator Variables (QIV), online measurements are not attainable due to
technological and/or economic limitations [18]. Since QIV values are obtained through expensive and time-
consuming offline sampling and laboratory analysis, which leads to delays preventing reliable control,
monitoring and supervision of the process. Soft-sensing methods can be an effective alternative in these
situations [18]. They are computational techniques that provide online and continuous “estimations” of the QIV
values by exploiting the measurements of other variables of the process that are continuously recorded online by
the physical sensors network. Model-based soft sensors use dynamic FPM to predict the process QIV, either

solely or using data provided by physical sensors (e.g., for adjusting their parameters).

Challenge 7: further to the deep knowledge, cost and effort required to build reliable FPMs of chemical
processes [18], available ones are often developed under the assumption of ideal working conditions. As a
results, when these FPM-based soft sensors are used at industrial scale, uncontrolled disturbances and, possibly,

different units/reactors geometries, can easily lead to the deterioration of their prediction accuracy [19].
2 Existing solutions and their shortcomings

2.1 Steady-state optimization

Existing solution: the use of Surrogate Based Optimization (SBO) methods have been proposed and received a
big deal of attention to tackle Challenge 1 [7, 6].



Drawbacks: current SBO methods proposed in the chemical engineering area show some limitations: i) they
iteratively discard the previous training datasets and generate new ones (by the complex FPM simulations) for
fitting new surrogate models, which can be computationally prohibitive in an online environment, ii) they do not
consider the surrogate models uncertainty during the optimization search [20, 7] and, iii) they do not difficulty of

handling uncurtaining of the constraints satisfaction (i.e., feasibility) [21].

Up to the author’s knowledge, the literature, yet, doesn’t include proposals for tackling the challenges that face
the applications of MPP approaches for handling uncertainty in the operation optimization of steady-state

processes for which the available model is complex, highly nonlinear and/or black box (i.e., Challenge 2).

2.2 Model predictive control

Existing solution: to overcome Challenge 3, explicit MPC methods have been developed [5], which solves the
MPC problem offline providing a solution in the form of simple mathematical expressions able to calculate the
optimal values of the control inputs, that should be applied in the next sampling period, as a function of the
current values of the process state variables [13]. The obtained explicit functions are employed online to

calculate the optimal values of the control inputs, in a simple and computationally cheap way.

Drawbacks: application of explicit MPC is conditioned by the availability of a linear discrete-time state-space
process dynamic model with moderate dimensionality, which hinders its smooth usage in cases where the

available process dynamic FPM is highly nonlinear, high dimensional, and/or black box [10].

2.3 Dynamic optimization

To the best of the authors’ knowledge, use of data-driven approaches has been rarely proposed in the literature to

tackle the challenges facing CVP methods in solving dynamic optimization problems (i.e. Challenge 4).

2.4 Data-driven dynamic modelling

Existing solution: ML techniques have been widely used to develop empirical dynamic models that capture the
behaviors of nonlinear chemical processes (Challenge 5) [23]. These empirical dynamic models are built using

data which are either generated from complex FPM simulations or measured from the real process [24].

Drawbacks: i) most of these methods are limited to univariate modeling, ii) they are validated using processes
characterized by steady dynamics that involve simple changes in the control inputs [25, 26], iii) they provide
simple Markovian models, while their ability to provide dynamic models with lagged inputs is not addressed,

and iv) their robustness to handle different case studies and to integrate different ML types is not explored.

2.5 Fault detection and diagnosis

Existing solution: to tackle Challenge 6, data-based FDD approaches have been proposed, which rely on using
data-driven Classification Techniques (CTs) that are trained using process historical data including information
about normal and different faulty situations [19]. Then these CTs can be used for process supervision to detect
and diagnose possible faults from the process output measurements. These approaches have shown a great
flexibility and robustness for the FDD of nonlinear chemical processes without requiring any mathematical

model of the process [19].



Drawbacks: CTs suffer from serious limitations, which is that the classification of faults is based only on the
measurements of the process outputs, lacking any knowledge about the system dynamics. In dynamic situations,
CTs could easily produce false alarms by diagnosing the changes in the processes outputs as faults.

2.6 Soft-sensing
Existing solution: to tackle Challenge 7, data-driven soft-sensing methods have been proposed. They are based

on the construction of a data-driven model able to accurately approximate the relation between the QIV and the
other online variables. In the literature, data-driven soft-sensors have been vastly applied to continuous
processes, in order to predict the process steady-state behavior [26]. Comparatively, their application to batch

processes, which are always in transient state, have been found to be relatively more complicated [27].

Drawbacks: most data-driven soft-sensing approaches for batch processes proposed in the literature have not
considered the initial conditions of the batches, since they have been tailored for batch processes operated under

fixed initial conditions.
3 Objectives

Directed by the challenges and drawbacks of current solution methods, the objectives of the Thesis include:

> Objective 1: the implementation of different state-of-art techniques for Design Of Computer Experiments

(DOCE), ML models (also called data-driven or surrogate models), and ML models validation procedures.

» Obijective 2: the development of a framework for data-based modeling of steady-state processes, which
integrates the previously implemented techniques (in Objective 1). This framework is aimed at the flexible
and robust construction of accurate ML or surrogate models of different types, and also the comparison

between them to select the best ML model type for the case study to be addressed.

» Obijective 3: the development of new methods for steady-state operation optimization of processes based on
surrogate models, which enable the optimization of complex chemical processes that are difficult to be
optimized through classical optimization methods. These difficulties can be due to the complexity and high

nonlinearly of the process model and/or the existence of uncertainty sources.

> Obijective 4: the development of an efficient and generic framework for data-driven multivariate dynamic
modelling and emulation of complex and nonlinear chemical processes. The framework aims at providing

dynamic models able to accurately and speedily predict the process outputs over large time horizons.

» Obijective 5: the integration of these data-driven dynamic models in efficient methodologies for the
enhancement of the process monitoring (e.g., a soft-sensing methodology), control (e.g., a dynamic

optimization methodology) and supervision (e.g., a FDD methodology).
4 Contributions

The main contributions of the thesis are novel methodologies and algorithms, where each contribution is shown

in an independent chapter.
» Chapter 3 (References no. [10, 11], in the thesis publication list)

e Contribution I: a new SBO methodology for the steady-state operation optimization of complex

nonlinear chemical processes has been developed, in which the objective function and/or the constraints



are represented by black-box functions. The proposed approach consists in replacing the complex,
nonlinear, black-box model of the processes built based on first principles with global kriging surrogate
models. Then, an active optimization strategy involving a sequential sampling procedure, based on the
Constrained Expected Improvement techniques, is used to explore the search space of the decision
variables and to adapt, accordingly, the surrogate models, so as to reach a global solution for the

problem. This contribution tackles Challenge 1 and is related to Objectives 1, 2 and 3.

e Applications: the methodology is applied to three benchmark examples and to two case studies of

operation optimization of chemical processes modeled by modular black-box simulators.
» Chapter 4 (References no. [1, 6, 7 12, 13, 14, 15, 17], in the thesis publication list)

e Contribution I1: a novel ML-based methodologies for the multiparametric solution of continuous and
mixed integer optimization of chemical processes operation, influenced by traceable uncertainty sources,
has been developed. The methodologies are aimed at providing very accurate and fast-running data-
based models that approximate the multiparametric behavior of the optimal solution over the uncertain

parameters space. This contribution tackles Challenge 2 and is related to Objectives 1, 2 and 3.

e Applications: the methodologies are demonstrated through their applications to different benchmark

examples from the MPP literature and to cases studies of process and unit operations optimization.
» Chapter 5 (References no. [18, 27], in the thesis publication list)

e Contribution 1l1: it consists in the development of a novel Data-Based explicit MPC methodology,

which enables simple implementations of explicit MPC in situations when the available FPM model of

the process is complex. This contribution tackles Challenge 4 and is related to Objectives 1, 2 and 5.

o Applications : the effectiveness of the methodology is proven by its application to two benchmark
examples adopted from the explicit MPC literature.

» Chapter 6 (References no. [2, 19], in the thesis publication list)

e Contribution 1V: a novel methodology for data-driven multivariate dynamic modelling and multistep-

ahead prediction of nonlinear processes using ML models is developed. The proposed methodology
utilizes machine learning techniques for building a group of NARX models, each of them able to predict
the evolution of one process output as a function of the other inputs and outputs of the process, over a
suitable time lag. The set of multivariate dynamic models, then, forecast the process outputs along larger
time intervals (multistep-ahead prediction), through a recursive and inter-coordinated prediction scheme.

This contribution tackles Challenge 5 and is related to Objectives 1, 2 and 4.

e Application: the methodology is illustrated through its application to three case-studies of nonlinear
dynamic processes selected from the process industry literature, including a bioreactor, three-

interconnected-tanks, and an oil-shale pyrolysis batch reactor.
» Chapter 7 (References no. [5], in the thesis publication list)

e Contribution V: a novel data-driven methodology for the sequential dynamic optimization applicable to

solve open loop optimal control problems of complex highly nonlinear processes is presented. The



method is based on the construction of a set of multivariate dynamic surrogate models (Chapter 6),
which are able to accurately and rapidly predict the process output behavior corresponding to any time-
profile of the process control inputs. Then, a sequential dynamic optimization procedure is tuned to
integrate this set of dynamic surrogate models. This contribution tackles Challenge 3 and is related to
Objectives 1, 2, 4 and 5.

o Application: the methodology is applied to three well-known problems from the process systems
engineering area, including a plug-flow reactor, batch reactor, and a parallel reaction problem.

» Chapter 8 (References no. [3,20, 27], in the thesis publication list )

e Contribution VI: proposes a novel data-based methodology for FDD that combines i) a dynamic

observer based on multivariate dynamic surrogate models (Chapter 6) capable of estimating the
expected normal outputs of the process and ii) ML classification techniques which are trained with
residuals created from the comparison between the estimated outputs by the observer and the real outputs

of the process. This contribution tackles Challenge 6 and is related to Objectives 1, 2, 4 and 5.

e Application: the performance of the method is illustrated through its application to the well-known

three-tank benchmark case study

» Chapter 9 (References no. [4, 25,26], in the thesis publication list)

e Contribution VII: presents a new ML-based soft-sensing methodology for the online prediction of QIV

of batch processes operated under changeable initial conditions (e.g., processes manage raw materials
whose specifications differ from one batch to another, or when different product qualities/quantities are

to be generated). This contribution tackles Challenge 7 and is related to Objectives 1, 2, 4 and 5.

e Application: the methodology is demonstrated by its application to two simulation case-studies (a batch

reactor and a fed-batch fermenter for Penicillin production) and to a real photochemical pilot plant.
5 Conclusions

This Thesis addresses two of the main challenges that can be faced at the different levels of chemical plants
operation, which are the complexity of the available physics-based models of the processes and, in other
situations, the lack of the process model. To tackle these challenges, the Thesis developed a platform of novel
and efficient computer-aided methodologies relying on Al and ML. Each methodology is tailored to tackle these
challenges at specific module/task of operation, such as SSO, MPC , multivariate dynamic modelling, dynamic
optimization, FDD, and soft-sensing. The methodologies are developed through integrating a large number of
tools and techniques in a highly innovative way, such as Design of Computer Experiments, ML regression
models, ML classification models, clustering methods, mathematical programming, heuristic optimization, and
modelling and simulation tools. The developed methodologies are assessed by comparing their performances to
those of the state-of-the-art solution procedures, via their application to a wide range of benchmark examples and
case studies of different characteristics, such as batch, fed-batch, continuous, single-unit, multiunit, simulated
and real pilot processes. Moreover, the examples and case-studies belong to diverse domains including energy,
reaction, biochemical, and environmental engineering. The obtained results confirms the remarkable

effectiveness, high robustness and wide applicability of the developed



methodologies. The methodologies could find real industrial applications in a wide range of problems, from
process control and monitoring to process design, as well as sectors, from bulk chemicals to specialty and fine

molecules.
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