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The safe and optimal operation of large and complex industrial processes requires meeting goals
and objectives in different time scales ranging from long-term planning and scheduling to fast cor-
rective actions for stable operation. Realizing all the goals and constraints as a whole can be a very
challenging and unrealistic task, especially if formulated as a single centralized optimization and
control problem. Thus, the operation of any process is typically decomposed into various decision
making layers, ranging from regulatory control, supervisory control, real time optimization, and
planning and scheduling [29, Ch.10], [5].

The main focus of this thesis is the real-time optimization (RTO) layer. The economic optimiza-
tion of any process performance in the context of real-time optimization is becoming more crucial
in the face of growing competition, increasing demands, and the necessity to focus on sustainability
and energy efficiency. Process optimization directly enables safe operation, cost reduction, improv-
ing product quality and meeting environmental regulations and this is the main focus of the RTO
layer.

In many process control applications, real-time optimization uses nonlinear steady-state process
models to compute the optimal setpoint at steady-state operation [27]. The justification for using
steady-state models is twofold; 1) the economic operation of the plant often occurs at steady-
state operation, 2) steady-state models are more easily available and can be much simpler [27].
RTO is also provided with constraints such as process and equipment constraints, storage and
capacity constraints, product quality constraints etc. In addition, RTO uses an economic model
that constitutes the cost of raw material, value of the products, operational costs, environmental
regulations etc. to evaluate the economics of operation.

Traditionally, RTO implementation is based on steady-state nonlinear models that are parame-
terized by a set of unknown or uncertain parameters, which are updated using measurement data.
The updated model is then used to compute the optimal set of decision variables by solving a numer-
ical optimization problem. The repeated identification and optimization scheme using steady-state
models is used in many commercial RTO software packages [2].

Despite the economic benefits and promises, traditional real-time optimization is not used com-
monly in practice. Consequently, the full potential of RTO is not exploited in process industries.
The main research question that this thesis deals with is,

“Why is traditional real-time optimization not commonly used in
industry, and how can these challenges be addressed?”
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Challenges with traditional RTO

The main challenges which limits the industrial use of RTO include:

• Challenge 1 - Cost of developing the model (offline).

• Challenge 2 - Model uncertainty, including wrong values of disturbances and parameters
(online update of the model).

• Challenge 3 - Numerical robustness, including computational issues of solving optimization
problems.

• Challenge 4 - Frequent grade changes, which makes steady-state optimization less relevant.

• Challenge 5 - Dynamic limitations, including infeasibility due to (dynamic) constraint viola-
tion.

• Challenge 6 - Problem formulation - choosing the right formulation for the right problem.

In this thesis, we take a detailed look at these challenges and aim to address each of the chal-
lenge. The different challenges, along with the solutions proposed in this thesis for each challenge is
described below.

Challenge 1: Cost of developing model

The cost of developing a model is the biggest bottleneck in the traditional RTO paradigm. De-
veloping good first principle-based models is often challenging and expensive, especially for new
application areas with limited domain knowledge. In addition, lack of knowledge or model simplifi-
cation lead to mismatch between the physical models used in the optimizer and the real system. With
increasing complexity of many industrial processes, simplified first-principle models are insufficient
to accurately capture the system behavior.

Proposed solution: Model-free optimization approaches such as extremum seeking control as
proposed in Chapter 5 may be used to circumvent the need for developing complex models. In
addition, Chapter 4 proposes a systematic approach to using classical feedback controllers and
simple logic structures to switch between active constraint regions. Machine learning approaches
may also be used to address this challenge as briefly discussed in Appendix M.

Challenge 2: Online update of the model

Since traditional RTO uses steady-state models, the model adaptation step must be carried out
using measurements that corresponds to steady-state operation. A steady-state detection algorithm
is used to detect if the process is operating at steady-state conditions. This is known as steady-state
wait time. In a recent review paper on current practices of RTO, [4] concludes that a fundamental
limiting factor of RTO implementation is the steady-state wait-time associated with the online
update of the model. If the process is frequently subject to disturbances, or if the settling times
are rather long, this can lead to the plant being operated in transients for significant periods of
time. With the inadequacy of steady-state conditions, the model is not updated frequently, leading
to wrong values of disturbances and parameters in the model. Consequently the plant is operated
suboptimally for long periods of time.

Proposed solution: To address the problem of steady-state wait time, several different approaches
are proposed in this thesis. In Chapter 2, we propose a “hybrid” combination of steady-state and
dynamic RTO approach, where transient measurements are used in the traditional two-step steady-
state RTO paradigm. In addition, this thesis also proposes different alternative approaches to RTO
that use transient measurements. For example, a novel model-based gradient estimation scheme
using transient measurements is proposed in Chapter 3, that does not require the steady-state wait

2



time. Chapter 5 proposes a novel dynamic extremum seeking scheme using transient measurements
that results in a significantly faster convergence to the optimum, since it does not require the static
map assumption (unlike most extremum seeking schemes). Additionally, the different methods
proposed in Chapters 4 and 6 also use transient measurements, hence eliminating the need for
steady-state wait time.

Challenge 3: Computational issues and numerical robustness

Solving numerical optimization problem to compute the optimal setpoints, leads to high compu-
tational effort. Although the computational cost is considerably less for solving steady-state opti-
mization problems than dynamic optimization problems, the optimization problem may still fail to
converge for large-scale processes (numerical robustness). Therefore, there is a clear need to develop
alternative approaches to RTO that does not require solving numerical optimization problems online.

Proposed solution: To avoid solving numerical optimization problems online, we propose to
convert the steady-state optimization problem in to a feedback control problem, where the inputs are
directly manipulated based on the feedback measurements. The Hybrid RTO approach in Chapter 2
is converted to a feedback problem in Chapter 3. A systematic approach for using classical feedback
controllers along with advanced control elements such as selectors is proposed in Chapter 4, which
avoids the need for a separate optimization layer. Extremum seeking control proposed in Chapter 5
and the combination of extremum seeking control and self-optimizing control in Chapter 6 are also
based on feedback control.

Challenge 4: Frequent grade changes, which make steady-state optimiza-
tion less relevant

Processes with frequent changes in feed, product specifications, market disturbances, frequent grade
transitions, cyclic operations and batch processes etc. make traditional steady-state RTO less rele-
vant. Such cases require dynamic optimization methods (e.g. Dynamic RTO or economic NMPC).
However, solving dynamic optimization problems are computationally intensive, even with today’s
computing power (cf. Challenge 3). This challenge grows even more in the presence of uncertainty.
In this case, one cannot avoid solving numerical optimization problems. Hence, there is a need to
address the computational cost of solving dynamic optimization problems [3, 6].

Proposed solution: In the presence of uncertainty, this thesis first considers what is a good
problem formation for dynamic RTO under uncertainty in Chapter 7, where multistage scenario-
based formulation is identified as an effective way of handling uncertainty in the dynamic RTO
problem. One of the main challenges with the multistage problem formulation is that it leads to a
large problem size. Algorithms proposed in Chapters 9 and 10 deals with addressing the computation
time of multistage economic NMPC by using decomposition methods and parametric optimization
concepts.

Challenge 5: Dynamic limitations, including infeasibility due to (dynamic)
constraint violation

The optimal solutions computed by the optimization layer is often provided as setpoints to the
controllers in the automation layer. It may happen that the setpoints are not feasible for the lower
level controllers, and may violate the constraints dynamically. This may be due to the unmodeled
effects in the optimization layer or due to the multivariable coupling between the different control
loops that are not taken into account in the optimization layer.

Proposed solution : This challenge can be addressed by using a setpoint tracking NMPC in the
supervisory control layer for multivariable constrained control as shown in Chapter 2.
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Challenge 6: Problem formulation - choosing the right formulation for the
right problem

Problem formulation is probably one of the most important, and conceptual challenges with online
process optimization. With developments in different alternative approaches to process optimization,
ranging from traditional model-based formulation, to economic MPC, extremum seeking control,
classical feedback control, modifier adaptation etc., a proper understanding of the advantages and
disadvantages of the different approaches is lacking. Often, the different approaches are seen as
competing to one another. There is no single available formulation that addresses all the challenges
above.

Industrial processes differ in their infrastructure (available sensors and manipulators, compu-
tational platforms etc.), value chain (which affects the objective function) and safety criticality
(robustness vs. performance) to name a few. For example, in many applications, the economic gain
by using dynamic optimization may be negligible, while in others it may not be. In general, there is
a lack of consensus in the literature on the use of steady-state versus dynamic problem formulation.
Some applications may call for fast disturbance rejection, while some other applications can tolerate
disturbances for a longer period of time. In the presence of uncertainty, some applications may
require hard robust constraint satisfaction at the cost of conservativeness (safety criticality), while
it may not be the case in some other applications. Understanding the needs of the application at
hand, and choosing the right formulation is therefore a key factor in successful industrial application
of real-time optimization.

Proposed solution: The different approaches to RTO are not contradictory, but indeed comple-
mentary. This is demonstrated in Chapter 6 using self-optimizing control and extremum seeking
control. Furthermore, in the conclusion section, we attempt to provide an overview of the different
approaches, comparing the advantages and disadvantages of the different approaches, in the hope
that this might serve as a guideline/cheat-sheet in choosing the right problem formulation. Chapter 7
particularly considers the problem formulation of economic NMPC under uncertainty and proposes
the multistage scenario-based formulation as one of the promising alternatives, that provide a certain
degree of flexibility in the problem formulation.

Challenges related to human aspects

When considering the research question “Why is traditional real-time optimization not commonly
used in industry?”, one cannot ignore the human aspects. Besides the different technological chal-
lenges discussed above, one of the main bottlenecks to widespread application of real-time optimiza-
tion, arises from human aspects that include the end-user’s ability to learn, understand, and use the
technology over a prolonged period of time. A recent industrial survey published in the International
Federation of Automatic Control (IFAC) newsletter [26] aptly identifies people and human aspects
as one of the major components when addressing challenges related to adopting new technology.
This is also pointed out by several researchers in the field of process control and optimization, see
for e.g. [6, 23, 22] to name a few. Indeed, most practitioners will also point to challenges related to
human aspects as the most important among all the challenges listed here. The human aspects can
be broadly divided into corporate culture and technical competence.

Corporate culture : Corporate culture forms the foundation of how an organization works, and
plays a vital role in adopting a new technology. The corporate culture in some organizations may
be such that, major changes such as deployment of new technology are resisted. Instead, one prefers
“trusted” technology in order to minimize liability [23]. “Operator confidence” is another important
aspect, as they are the end users. Failure to gain operator confidence will lead to an unsuccessful
implementation of the technology.

Technical competence : Lack of competence and training is another major issue when adopting
advanced optimization tools. Models and optimization tools require regular maintenance and re-
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tuning, in order to sustain the performance improvements. For example, changes in feed conditions,
instrument and equipment degradation and changes in process equipment leads to performance
degradation over time. The expected benefits from using online optimization tools are at a risk,
without regular monitoring and maintenance [6]. This was also pointed out on a special report on
process control in the Oil and Gas Journal [28].

Since the optimization layer is generally a multivariable and large-scale problem, the complexity
and the understanding of the optimization concepts presents key challenges for the end users, as
also previously pointed out by [24] and [21]. Often, expert knowledge is required to perform the
maintenance, which may be limited in the organization1. With increasing number of applications,
there is a paucity of skilled engineers to provide maintenance and support, to sustain the benefits.
As noted by [6], skilled engineers involved in the initial implementation are often not available for
maintenance, resulting in performance degradation, and the application being turned off by the
operators.

Therefore, when addressing the different challenges listed above, it is imperative to take into
account the human aspects. The different methods proposed in thesis are also influenced by the
challenges related to human aspects. The use of simple PID control tools for optimal operation
proposed in Chapter 4 is the perfect example of this, since it is based on classical control tools and
simple logic blocks that have been in use for several decades in the process industry. In Chapter 7,
we again consider the human aspects when justifying the multistage formulation as a promising
approach to dynamic optimization under uncertainty.

Main contributions of the thesis

The thesis comprises of 10 main chapters divided into two parts.

Part I (Chapters 2 - 6) - The first part of the thesis deals with optimal steady-state operation
and looks into how transient measurements can be used in order to address the steady-state wait
time problem. In addition, it also presents some algorithms to achieve optimal operation without
the need to explicitly solve numerical optimization problems online. To address the challenge of
developing models, some model-free optimization tools are also presented in Part I. In general, Part
I of this thesis deals with the use of “simple” tools for RTO, that are motivated by industrial needs.

Part II (Chapters 7 - 10) - The second part of the thesis deals with dynamic optimization
problem, and in particular addresses the problem of computation cost of solving the economic
NMPC problem. To handle uncertainty in the economic NMPC problem, we consider the multistage
scenario-based problem formulation, which we propose to solve using primal decomposition, in order
to ensure close-loop implementation.

The main contributions of this thesis are the novel methods and algorithms that are
proposed in the different chapters to address the challenges listed above.
The key contributions (theory in bold and application in italics) are now listed chapter-wise:

Chapter 2 (Based on the article published in [11])

• Hybrid RTO approach with dynamic model update and steady-state optimization
to avoid steady-state wait time.

• Application - Demonstrated using an oil and gas production optimization problem with 2 wells
in the chapter and 6 wells in [19].

1This is also my first-hand experience from Statoil.
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Chapter 3 (Based on the article published in [15])

• A novel gradient estimation algorithm using nonlinear models and transient mea-
surements.

• Application - Demonstrated using a CSTR process with 2 components in the chapter. This
method was also successfully tested on a 3-bed ammonia reactor example [1], oil and gas produc-
tion optimization with 2 wells [13] and 6 wells [7], evaporator process [14], isothermal CSTR
with 4 components [17], which are all appended to this thesis.

Chapter 4 (Based on the articles published in [17, 7])

• Linear gradient combination as optimal controlled variables.

• Systematic approach to designing selectors for CV-CV switching .

• Application - Demonstrated using a CSTR process with 2 components and an oil and gas pro-
duction optimization problem with 6 wells, and an isothermal CSTR process with 4 components
in the chapter. The appendix includes an experimental evaluation of this approach for optimal
operation of an electrical submersible pump lifted well.

Chapter 5 (Based on the article in-preparation [16])

• Novel dynamic extremum seeking scheme with fixed linear dynamics for Hammer-
stein systems.

• Bounds on neglected linear dynamics for robust stability.

• Application - Demonstrated using a pressure oscillation damper in lean burn combustors.

Chapter 6 (Based on the article published in [30])

• Hierarchical combination of extremum seeking control and self-optimizing control
for improved performance.

• Application - Demonstrated using a 3-bed ammonia reactor example.

Chapter 8 (Based on the articles published in [8, 9])

• Application - Application of multistage scenario-based MPC to an oil and gas production
optimization problem.

Chapter 9 (Based on the articles published in [12, 10])

• A Distributed multistage scenario MPC framework using primal decomposition
to ensure feasibility of the non-anticipativity constraints.

• A backtracking algorithm to choose the step-length in the master problem.

• Application - Demonstrated using a CSTR process with 2 components in the chapter, in
addition to an oil and gas production optimization problem [10], which is appended to the
thesis.

Chapter 10 (Based on the article published in [18])

• A sensitivity-based distributed multistage scenario MPC to reduce the number of
NLPs that needs to be solved.

• Application - Demonstrated using a CSTR process with 2 components.

6



In addition to the different methods and algorithms proposed, perhaps one of the important
contributions of this thesis is that it aims to provide an overview and a clear understanding of the
different approaches to online process optimization, which is summarized in Table 2.

Although chapter 7 does not present any novel material, it presents useful and interesting discus-
sions on optimization problem formulation under uncertainty. In particular, it provides discussions
on “What is a good problem formulation to handle uncertainty in dynamic RTO and economic
NMPC? ” and provides a clear distinction between open-loop and closed-loop optimization.

Some other minor contributions include:

• A systematic approach to select the discrete scenarios for multistage NMPC from historical
process data using principal component analysis (see Appendix K).

• Algorithm to shrink the uncertainty set online using recursive Bayesian weighting for time-
invariant parametric uncertainty in the context of multistage scenario MPC (See Appendix L)

Industrial relevance and impact

Table 1: Control technologies used in this thesis, along with its impact based on the industrial survey
from the 2019 IFAC newsletter[26]

Control Current Future Used in
Technology Impact Impact Chapter
PID control 91% 78% 3,4,6
System Identification 65% 72% 5
Estimation and filtering 64% 63% 2,3,8
Model Predictive Control 62% 85% 2,7–10
Process Data Analytics 51% 70% App M,L
Fault detection 48% 8% –
Decentralized/coordinated control 29% 54% 9,10
Robust Control 26% 42% –
Intelligent Control 24% 59% –
Nonlinear Control 21% 42% –
Discrete-event systems 24% 39% –
Adaptive Control 18% 44% –
Repetitive Control 12% 17% –
Other advanced control 11% 25% –
hybrid dynamical systems 11% 33% –
Game theory 5% 17% –

As mentioned earlier, the main research focus of this thesis is motivated by the realization that
real-time optimization is not used as much in practice as one would expect. We consider the different
challenges in detail and provide various solutions to address the different challenges listed above.
Furthermore, the use of simple PID controllers for optimal operation proposed in Chapter 4 may be
immediately applicable in practice, since this is based on classical feedback controllers and simple
logic blocks that are used widely in process industries.

The different approaches and algorithms proposed in this thesis are based on control technologies
that have a high impact on industry. In April 2019, the industrial committee of the International
Federation of Automatic Control (IFAC) published a list of control technologies along with its current
and future impact [26] (A survey article with very similar conclusion was also published in the IEEE
Control Systems Magazine [25]). Comparing the survey results in [26, 25], it can be seen that the
different methods and algorithms proposed in this thesis are in fact based on the top five control
technologies listed in this survey. This is shown in Table. 1, which is indicative of the industrial
relevance and impact of this thesis, now and in the future.
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List of publications

Over the past three years, this PhD work has resulted in 11 journal papers (8 published, 1 under
revision, and 2 in-preparation) and 19 peer-reviewed conference papers (17 published and 2 under
review) and more than 17 abstract-only/invited presentations at workshops and meetings. The full
list of publications and presentations can be found in the authors CV.

The work has been published in high quality journals such as Industrial & Engineering Chemistry
research [15, 17], Journal of Process Control [12, 30], Computers and Chemical Engineering [11],
Control Engineering Practice [7], IEEE Control System Letters [18] and Processes [8], in addition
to papers in well established conference series such as ESCAPE, IFAC DYCOPS, IFAC ADCHEM,
and ECC, to name a few.
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