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Summary 

Deterministic optimization approaches have been well developed and widely used 
in the process industry to accomplish off-line and on-line process optimization. The 
challenging task for the academic research is currently to address large-scale, 
complex optimization problems under various uncertainties. Therefore, 
investigations on the development of stochastic optimization approaches are 
required. In this Thesis, a new approach for chance constrained programming of 
large-scale nonlinear dynamic systems under uncertain operating conditions as well 
as uncertain model parameters is presented. The stochastic property of the 
uncertainties is explicitly considered in the problem formulation in which some input 
and state constraints are to be complied with predefined probability levels. The 
method considers a nonlinear relation between the uncertain input and the 
constrained variables. The resulting optimization problem is then relaxed into an 
equivalent nonlinear optimization problem such that it can be solved by a nonlinear 
programming (NLP) solver. The major challenge towards solving chance 
constrained optimization problems lies in the computation of the probability and its 
derivatives of satisfying inequality constraints. The formulation of single or joint 
probability limits incorporates the issue of feasibility and the contemplation of trade-
off between robustness and profitability regarding the objective function values. The 
new approach is relevant to all cases when uncertainty can be described by any 
kind of joint correlated multivariate distribution function.  
 
The potential and the efficiency of the presented systematic methodology are 
illustrated with application to different processes under uncertainty, in particular, 
transient processes. Moreover, the functionality and efficiency of the developed 
chance constrained framework are demonstrated throughout on examples of 
design, operation and control problems. Besides, two model-based approaches are 
developed to provide a close integration of dynamic real time optimization D-RTO 
and control, and to cope with uncertainty.  

 
 
Problem Statement 

Robust decision making under uncertainty is deemed to be a crucial factor in many discipline 
and application areas. The competitive nature of the market environment imposes reliability 
requirements in meeting product demands and quality standards. The chemical industry is, 
therefore, required to make design and operating decisions which satisfy several conflicting 
goals in an optimal and safe manner. However, uncertainty and variability are inherent 
characteristics of any process system. They arise due to the unpredictable and instantaneous 
variability of different process conditions, such as temperature and pressure of coupled 
operating units, market conditions, (recycle) flow rates and/or compositions or other model 
parameters such as kinetic constants or equilibrium parameters. These uncertainties or 
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disturbances are often multivariate and form correlated stochastic sequences which have a 
chain-effect on each unit operation of a production line.  
 
In industrial practice, uncertainties are usually compensated for by using conservative 
measures such as over-design of process equipment and then retrofits to overcome operability 
bottlenecks, or overestimation of operational parameters caused by worst case assumptions of 
the uncertain parameters, which leads to a significant deterioration of the objective function in 
an optimization problem. In other deterministic approaches, the expected values are used, 
which most likely leads to violations of the constraints when the decision variables are 
implemented on site. Moreover, using feedback control to compensate the uncertainty effects 
can not ensure adherence to the constraints on the open-loop variables. In several cases, 
particular variables describing product properties like composition, viscosity, density, and etc. 
can not be measured online. These variables are open-loop under the uncertainties, but they 
are supposed to be confined to a specific region corresponding to the product specifications. It 
should be noted that even measurable disturbance variables are also stochastic variables, 
because they may have been measured to the present time point, but their future values are 
unknown. However, in conventional design methods for feedback control systems the 
description of disturbances is not rigorous. Step change and white noise are the two types of 
disturbances typically considered thus far. Consequently, the consideration of 
uncertainties/disturbances and their stochastic properties in optimization approaches are 
necessary for robust process design, operation, and control. 
 
In this thesis, the main focus is related to the application to transient processes. The 
optimization of such inherent dynamic processes is usually performed using model-based 
optimization techniques. In most previous studies, a nominal model is considered, with which 
the outcomes of a deterministic optimization allow neither variation nor uncertainty on 
operating conditions or model parameters. Moreover, it is not possible to generate highly 
accurate phenomenological models for most chemical processes because of the imprecise 
values of their physical parameters, and the lack of complete understanding of the underlying 
physical phenomena. The usually limited quality and quantity of input-output data used to fit 
the model implies that the model will not be an exact representation of the real process. Thus, 
the practical implementation of model-based techniques often leads to a significant 
discrepancy between reality and simulation. Therefore, the existence of these uncertainties has 
a detrimental impact on the optimized process and raises questions like: what would be the 
probability of complying with the constraints in accordance with the optimized operating 
policy? Handling uncertainty, which becomes important especially in the presence of 
constraints on quality and safety, has not been adequately addressed so far and constitutes a 
significant bottleneck in applying optimization techniques to real processes. Therefore, 
accounting for the uncertainties involved in an optimization problem formulation, any 
improvement obtained regarding a specified economic objective function may occasionally 
become irrelevant, i.e. safety, reliability, and operability are often decisive, and more crucial 
than an economic objective (Grossmann and Morari, 1984). However, these issues are more 
complex and there is no obvious approach to suitably assess them (Figure 1). Thus, in most 
cases, conservative decisions based on heuristics or empirical rules are made which might 
lead to a substantial profit decrease. Accordingly, it demands systematic methods to evaluate 
the trade-off between profitability and reliability of a planned operation. 
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Figure 1:   General operational objective targets. 
 
 
 
State of the art 

During the past decades several approaches have been suggested to address these problems in 
a systematic manner. These techniques mostly differ in how uncertainty is handled as well as 
in the objectives that may include process flexibility, profitability, and/or robustness. In 
general, the direct solution can be problematic due to the difficulty in both evaluating the 
integral over the uncertain parameter space and ensuring feasibility of the inequalities for all 
parameter values instances (Samsatli et al., 1998). Overview of developments in the area of 
process design and operations under uncertainty are given in comprehensive reviews of 
Grossmann et al. (1983), Kall and Wallace (1994), Pistikopoulos (1995), Wets (1996), 
Diwekar (2003), Sahinidis (2004). The emphasis of these studies, particularly in chemical 
engineering, has been mainly on process design problems. While most of the researchers were 
concerned about independent uncertain variables, Rooney and Biegler (1999, 2001) studied 
the effect of correlated uncertain variables on plant design. Two approaches have been used to 
represent uncertain variables: discrete and continuous distribution. In the former, the bounded 
uncertain variables are discretized into multiple intervals such that each individual interval 
represents a scenario with an approximated discrete distribution (Halemane and Grossmann, 
1993; Subrahmanyam et al., 1994; Pistikopoulos and Ierapetritou, 1995; Rooney and Biegler, 
1999). Thus, so-called multiperiod optimization problems are formulated. The second 
approach considers the continuous stochastic distribution of the uncertain variables, in which 
a multivariate numerical integration method will be chosen. This leads to a stochastic 
programming problem. An approximated integration through a sampling scheme (Diwekar 
and Kalagnannam, 1997) and a direct numerical integration (Bernado et al., 1999) have been 
used. Alternatively to sampled optimization algorithms, the stochastic problem can be relaxed 
to an equivalent NLP problem and then solved by using standard techniques. Thus, the 
optimization problem needs to be reformulated. If the uncertain variables have an impact on 
the objective function, it is usually formulated as the expected value of the objective function 
(Torvi and Herzberg, 1997; Acevedo and Pistikopoulos, 1998). Practically most of the 
previous cited works employed the two-stage programming method with the recourse 
formulation to deal with inequality constraints. In the two-stage approach, the first-stage 
decision variables are predetermined before the realization of the uncertain variables, while 
the second-stage variables are decided after their realization. Moreover, in the recourse 
formulation, violation of the constraints is allowed, but penalized through penalty terms in the 
objective function. This leads to additional costs regarding the second-stage decisions. This 
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approach is suitable when the objective function and constraint violations can be described by 
the same measurement, for example process planning problems under demand uncertainties 
(Clay and Grossmann, 1997; Gupta and Maranas, 2000).  This compensation, however, 
requires a common measurement to describe the objective function and the constraint 
violations. 
 
Decision making, however, inherently involves however consideration of uncertain outcomes. 
Thus, one is confronted with decisions a priori for the future operation. The decision though 
should be made before the occurrence of the random inputs. These uncertain variables can be 
constant or time-dependent in the future horizon. The stochastic distribution of the uncertain 
variables may have different forms. The mean and variance values can be determined based 
on historical data analysis. However, while computational advances in mathematical 
programming tools have aided decision making in many areas, their greatest impact may lie in 
enhancing decision making under uncertainty through stochastic programming. One method 
of stochastic programming is the probabilistic or chance-constrained approach which focuses 
on the reliability of the system, i.e., the system’s ability to meet feasibility in an uncertain 
environment. This reliability is expressed as a minimum requirement on the probability of 
satisfying constraints. Thus, the objective function is expressed in terms of expected value, 
while the constraints are expressed in terms of fractiles. In fact, stochastic optimization even 
with an approximated distribution is more reliable than a deterministic optimization. For the 
numerical optimization under probabilistic constraints, some methods have been developed 
and applied to several disciplines like finance and management (Prekopa, 1995; Uryasev, 
2000). In chemical process operations a few applications are known to date. It has been used 
by, for instance, Maranas (1997) for molecular design and Petkov and Maranas (1997) for 
planning und scheduling of multiproduct batch plants. Additionally, several studies on model 
predictive control using probabilistic programming have been carried out for linear processes 
(Schwarm and Nikolaou, 1999). In the case of a linear relation between the uncertain input 
and the output constraints, an efficient approach is presented by Prekopa (1995) for stochastic 
variables with correlated multivariate normal distribution, where numerical integration and 
sampling methods are combined. For the nonlinear case, sampling techniques can generally 
be employed. As an alternative to efficient sampling techniques (Diwekar and Kalagnanam, 
1997), in this Thesis, approaches to addressing nonlinear, steady-state as well as dynamic 
optimization problems under uncertainty are developed and applied to various challenging 
optimization tasks with uncertainties such as optimal design and operation, as well as optimal 
control of industrial processes under uncertainty. 
 
 
Key innovations 
 
 
1   Scope 
 
The challenge in this thesis is to address large-scale, complex optimization problems under 
various uncertainties. To deal with the unknown operating reality a priori, optimization under 
both parameter uncertainty and disturbance uncertainty has to be considered. Unlike the worst 
case analysis, for the presented approaches the stochastic characteristics (mean, covariance, 
correlation) of the uncertain variables will be involved in the optimization problem. While 
most parameter uncertainties are usually steady-state in nature, disturbance uncertainties are 
dynamic and will be described as stochastic processes. Uncertainties can be generally divided 
into external uncertainties like feed rate and/or its composition, recycle flows, temperature 
and pressure of the coupled operating units, supply of raw material and utilities, customer 
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demand, prices, market conditions and internal uncertainties representing the unavailability of 
process knowledge such as model parameters. Model parameters are often regressed from a 
limited number of experimental data. While internal uncertainties have been well studied, 
external uncertainties have not been much emphasized. However, these uncertain variables 
will propagate through the process to the output variables and the outputs will also be 
uncertain, i.e., for a nonlinear process it is very difficult to analytically describe the 
distribution of the outputs. To overcome this problem, chance constrained programming is 
proposed in this thesis to deal basically with inequality constraints, which are based on the 
process requirements or limitations. This implies new approaches to high-order nonlinear 
integration of the joint probability density function. 
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Figure 2:   Strategies based on different uncertainty estimations. 
 
Thus, the main propose is to make robust decisions accounting for uncertainties and unknown 
unexpected disturbances a priori. The main problem is illustrated in Figure 2. Whenever 
uncertainties are overestimated, the controls u will infer a conservative output distribution 
with regard to the constrained output and thus will lead to greater operational costs than 
actually needed (point 1 in Fig. 2). Unlike this, if the uncertainties are underestimated, the 
resulting strategy will be too aggressive which inevitably results in a high probability of 
constraint violation (point 3). Moreover, in practice, the presence of nonlinear (possibly time-
varying) unmodelled dynamics and non-stationary noise or disturbances complicates the 
situation. How does one determine an optimal decision in such a complex setting? What is 
proposed in this thesis is a quantitative analysis of the probability of violating constraints by 
following a determined optimal strategy (point 2) based on the explicit integration of the 
available stochastic information of the uncertain variables. This requires a prior knowledge 
about the probability distribution of the output variables. Generation of this information 
represents one of the main contributions of this thesis.  
 
In summary, a novel analysis and optimization framework is proposed for optimization 
problems under uncertainty. Based on the method of chance constrained programming, 
efficient solution approaches are developed to different process systems engineering problems 
in order to make optimal decisions by taking both performance (through the objective 
function) and reliability into account. The essential challenge in solving such problems lies in 
the computation of the probabilities of holding the constraints as well as their gradients. Due 
to the fact that a desired compromise between optimality and the reliability of complying with 
the constraints can be induced, as a result, the derived strategy is thereby neither conservative 
nor aggressive.  
 
 
2   Overview of the Thesis 
 
This thesis is devoted to the development of suitable algorithms and numerical techniques for 
the efficient solution of process engineering problems involving uncertainties. The proposed 
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chance-constrained optimization framework forms the basis for addressing design, operation 
and control problems under uncertainty. The rest of the thesis is structured in seven additional 
Chapters. The problem formulation in Chapter 2 reveals the necessity to explicitly 
incorporate the uncertainties into the optimization problems and underlines the importance of 
the chance constrained framework developed in this thesis. Moreover, the sources and 
characteristics of uncertainty and their analysis are highlighted. Chapter 3 reviews the main 
approaches which have been proposed for optimization under uncertainty. Chapter 4 
describes the main principles and properties of chance constrained programming problems 
focusing on linear and steady-state processes. In Chapter 5, the new framework for chance-
constrained programming of large-scale nonlinear dynamic systems under time-dependent 
uncertainty is introduced. The stochastic nature of the uncertainties is explicitly included in 
the optimization problem formulation. The method is based on the analysis of the relationship 
between the output constraints and the uncertain variables. The new approach involves 
efficient algorithms for an indirect computation of the output probability distribution so that 
the probabilities and their gradients can be obtained by numerical integration of the 
probability density function of the multivariate uncertain variables by collocation in finite 
elements. Furthermore, depending on the process characteristics (linear, nonlinear, steady 
state, dynamic), the uncertainty type (constant, time-dependent) and the form of the chance 
constraints (single, joint), there are 16 different possible formulations of chance-constrained 
problems, as illustrated in Figure 3, which can in principle be solved using the proposed 
framework in this thesis. 
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Figure 3: Classification of chance constrained problems 

 

In order to demonstrate the efficiency of the developed approaches, in Chapter 6 the chance-
constrained optimization framework is applied to an industrial scale process, namely a 
reactive semi-batch distillation process. The comparison of the stochastic results with the 
deterministic results is presented to indicate the robustness of the stochastic optimization. 
These achievements are an important step towards the implementation of robust optimal 
operating policies on real uncertain processes. 
 
In Chapter 7 two methods based on a Nonlinear Model Predictive Control (NMPC) scheme 
are introduced to solve closed-loop dynamic optimization problems within an online 
framework. The key idea lies in the consideration of unknown and unexpected disturbances in 
advance i.e. anticipating, in particular, violation of output hard-constraints. Here, the solution 
of the posed novel chance-constrained NMPC problem has the features of prediction, 
robustness and being closed-loop. Based on the moving horizon strategy, the developed 
control strategy is extended to on-line optimization under uncertainty. In addition, towards an 
integration of dynamic real-time optimization and control of transient processes, a two-level 
strategy is considered. 
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Additionally, in all chance-constrained optimization problems under uncertainty treated in this 
thesis, the formulation of individual pre-defined probability limits of complying with the 
restrictions incorporates the issue of feasibility and the evaluation of trade-off between 
profitability and reliability.  
 
Finally, a summary of the most important conclusions and key contributions are presented in 
Chapter 8. Furthermore, some suggestions and an outlook of potentially interesting future 
developments are presented. 
 
 
3   Summary of contributions 
 
This work presents a novel contribution to the research of optimization under uncertainty and 
provides theoretical developments and practical applications of chance-constrained 
programming. One of the main contributions is also that the solution of such problems based 
on the developed approaches can offer both optimal and reliable decisions such that the 
analysis of the outcomes allows for identifying the critical constraint which cuts off the 
largest part of the feasible region. This information is important for decision makers in order 
to relax the constraint, if necessary, so as to arrive at a meaningful decision. It has been 
demonstrated that probabilistic programming is a promising technique in solving optimization 
problems under uncertainty in process system engineering. Summarizing, the major 
contributions of the thesis are: 
 
Nonlinearity between constrained output and uncertain input 

The approach considers a nonlinear relation between the uncertain input and the constrained 
output variables. In fact, the approach is relevant to all cases when uncertainty can be 
described by any kind of joint correlated multivariate distribution function. The essential 
achievement is the efficient computation of the probabilities of holding the constraints, as 
well as their gradients. 
 
Mapping back or reverse projection of output probability distribution 

In systems where the relation between uncertain and constrained variables is nonlinear, the 
type of the probability distribution function of the uncertain input is not the same as the one of 
the constrained output. Thus, due to the nonlinear propagation, it is difficult to obtain the 
stochastic distribution of output variables. For this reason, nonlinear chance-constrained 
programming remained an unresolved problem. In this thesis, new approaches are introduced 
to infer the output probability distribution. The basic idea is to avoid directly computing the 
output probability distribution. Instead, an equivalent representation of the probability is 
derived by mapping the probabilistic constrained output region back to a bounded region of 
the uncertain inputs. Thus, within the developed framework the probability computation of 
the output constraints is transformed to a multivariate integration in the limited area of 
uncertain inputs. Hence, the output probabilities and, simultaneously, their gradients can be 
calculated through multivariate integration of the density function of the uncertain inputs. For 
this purpose, efficient algorithms are introduced based on the orthogonal collocation on finite 
elements with an optimal number of collocation points. However, since multiple time 
intervals are considered, the reverse projection of the feasible output region is not trivial. 
Therefore, the approach also involves efficient algorithms for the computation of the required 
(mapping) reverse projection so as to deal with large-scale nonlinear dynamic processes. 
 
 



Chance Constrained Optimization of Process Systems under Uncertainty 8 
 

Strict monotonic and non-monotonic relationship 

Depending on the relation between the uncertain input and the output variables, the developed 
method relies upon the case of a strict monotonic relationship between the constrained output 
variables and at least one of the uncertain input variables. However, the chance-constrained 
programming framework has also been extended to address stochastic optimization problems 
where no monotonic relationship between constrained output and any uncertain input variable 
can be assured. Especially for those process systems where the decision variables are strongly 
critical to the question of whether there is monotony or not such that chance-constrained 
nonlinear dynamic optimization can now also be realized efficiently even for those cases 
where the monotony can not be guaranteed. 
 

Consideration of single and joint constraints 

In this Thesis, the focus was also on the analysis of the impact of chance constraint 
probability limits on the optimal policies in terms of robustness and feasibility, particularly 
with regard to the optimized value of the objective function. These probability limits can be 
seen as measurements of the robustness of the optimized strategies. Obviously a high 
confidence level to ensure the constraints will be preferred. However, due to the nature of the 
uncertain inputs and the restriction of the controls and outputs, it is often impossible to find an 
operation policy with a 100% guarantee for complying with the constraints. Thus a maximum 
confidence level needs to be found first. As part of this work, therefore, a systematic analysis, 
appropriate to the system complexity, has been developed to compute this value. The novelty 
lies in the efficient computation of single and joint constraints and their gradients. 

 

Time-dependent uncertainties 

Uncertain variables can be constant or time-dependent in the future horizon. They are, 
however, undetermined before their realization. Moreover, usually only a subset of variables 
can be measured. However, in this work novel efficient algorithms have been integrated to 
consider time-dependent uncertainties. 
 

Integration of D-RTO and control level 

Furthermore, for the integration of dynamic real-time optimization and control of transient 
processes, a two-stage strategy is considered which is characterized by an upper stage 
corresponding to a dynamic optimization problem and a lower stage related to a tracking 
control problem. For this purpose, two methods based on a nonlinear model predictive control 
(NMPC) scheme are proposed to solve close-loop stochastic dynamic optimization problems 
assuring both robustness and feasibility with respect to state output constraints within an 
online framework. 
 

Dynamic adaptive back-off strategy 

Feasibility and robustness with respect to input and output constraints have been achieved by 
the proposed backing-off strategy. The resulting NMPC scheme embedded in the on-line re-
optimization framework is viable for the optimization of transient processes while 
simultaneously guaranteeing the constraints compliance - both for nominal operation as well 
as for cases of large disturbances e.g. failure situation. 
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Robust Nonlinear MPC under Chance Constraints 

Since the prediction of future process outputs within an NMPC moving horizon is based on a 
process model involving the effects of manipulated inputs and disturbances on process 
outputs, the compliance with constraints on process outputs is more challenging than these on 
process inputs. Furthermore, as the model involves uncertainty, process output predictions are 
also uncertain. This leads to output constraints violation by the close-loop system, even 
though predicted outputs over the moving horizon might have been properly constrained. 
Thus, a robust predictive control strategy is introduced for the online optimization of transient 
processes, in particular, under hard constraints leading to a chance-constrained nonlinear 
MPC scheme where the output constraints are to be held with a predefined probability with 
respect to the entire horizon. Due to the moving horizon approach, the control strategy can be 
extended to on-line optimization under uncertainty. 
 
Finally, a number of example problems such as batch reactors, reactor-separator system, batch 
distillation columns, reactor network system are discussed including the application of the 
optimization framework to a large-scale industrial process, namely a reactive batch 
distillation. Thus, the developed chance-constrained optimization framework demonstrates to 
be promising to address optimization problems under uncertainties. The different solution 
strategies have mainly been applied to transient processes. The solution provides a robust 
operation strategy in the future time horizon. Moreover, the relationship between the 
probability levels and the corresponding values of the objective function can be used for a 
suitable trade-off decision between profitability and robustness. Tuning the value of the 
different confidence levels is also an issue of the relation between feasibility and profitability. 
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