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Topics 

 Physical property data in simulation

 Conceptual design of conventional or hybrid separations 

 Modeling of special distillation systems (like divided wall columns, reactive 

distillation, dynamic systems)

 Parameter adaptation for plant snapshots and miniplant experiments

 Modeling of mass- and heat-transfer in distillation and absorption.
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Physical Property Data
BASF Database Structure
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Thermodynamic
Modules e.g. Multi-
flash (Infochem)

CAPEOPEN / DLL
interface to
simulation tools

DPP Data Preparation
Package (Dechema)

Further Data Sources
➜ Databases and Monographs (e.g. DDB, TDE-NIST, TRC, IUPAC)
➜ References Database (variety of properties)

Process
Simulation

Courtesy: M. Heilig, BASF SE

Chemasim
AspenPlus

Continuously updated
experimental data

 BASF data

 Commercial
databases
e.g. DIPPR,DDB



Physical Property Data
Models in Use

 NRTL / PSRK: 
 Mainly used for daily work, binary NRTL parameter sets from DETHERM@BASF

 Group contribution methods: 
 Estimation of pure component data

 Cosmo-RS/QSPR/Simularity: 
 Estimation of mixture phase equilibria
 Screening of additives

 PC-SAFT (EOS): 
 For enhanced applications, e.g. entrainer selection for azeotropic or extractive distillation
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Physical Property Data
Example Solvent Screening
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C4 steam cracking raw material – alkane
reduction by extractive distillation
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Physical Property Data – Challenges and Perspectives

 Exponential increase in available experimental 
data –> Evaluation necessary!

 Development and improvement of EOS-Models for simulation applications
Limitation: Parmeterization, numerical effort in  simulation
Extension to group contribution approach:
Evaluation of predictive capability of SAFT-γ-Mie in collaboration with Imperial College London

 Extended utilisation of molecular methods to get intermolecular interaction information.
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M. Frenkel / J. Chem. Thermodynamics 84 (2015) 18–40



Conceptual Design of Conventional or Hybrid Separations
Conventional Procedure

 Typical workflow for distillation systems consist of
 Physical properties analysis
 Choice of separation sequence (by heuristics or shortcut)
 Design of equipment (considering more complex network)
 Design of heat integration (e.g. Pinch-analysis)

 For multiproduct systems and hybrid separations the complexity of options increases
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Conceptual Design of Conventional or Hybrid Separations
Tools and Developments

 Use of molecular simulation methods
 E.g. Design of additives for azeotropic or

extractive distillation

 Short-Cut Software CoDeSC:
Feasibility of simple and hybrid reaction and 
separations.
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Conceptual Design of Conventional or Hybrid Separations
Example CoDeSC: Hybrid Distillation-Crystallization Process
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Stream 1 2 3 4 5 6 7 8 
𝑁̇𝑁[mol/s] 10.000 14.947 10.752 4.195 4.705 6.047 4.947 1.100 
𝑛̇𝑛𝐴𝐴[mol/s] 1.100 2.787 2.787 0.000 0.000 2.787 1.687 1.100 
𝑛̇𝑛𝐵𝐵[mol/s] 4.200 6.850 2.697 4.153 0.047 2.650 2.650 0.000 
𝑛̇𝑛𝐶𝐶[mol/s] 4.700 5.309 5.267 0.042 4.658 0.609 0.609 0.000 
𝑥𝑥𝐴𝐴[mol/mol] 0.110 0.186 0.259 0.000 0.000 0.461 0.341 1.000 
𝑥𝑥𝐵𝐵[mol/mol] 0.420 0.458 0.251 0.990 0.010 0.438 0.536 0.000 
𝑥𝑥𝐶𝐶[mol/mol] 0.470 0.355 0.490 0.010 0.990 0.101 0.123 0.000 
 

Assumption: Ideal split in each unit Courtesy: S. Deublein, BASF SE



Conceptual Design of Conventional or Hybrid Separations
Tools and Developments

 Use of molecular simulation methods
 E.g. Design of additives for azeotropic or extractive

distillation

 Short-Cut Software CoDeSC:
Feasibility of simple and hybrid reaction and 
separations

 Systematic design approach for hybrid processes 
combining distillation and membrane separation:
Ongoing transfer project from SFB Transregio 63
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Conceptual Design of Conventional or Hybrid Separations
Example: EtOH-Water Separation by Distillation & Pervaporation
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Scharzec et al. Chem. Ing. Tech. 2017, 89, No 11 1534 – 1549
Skiborowski et al., Ind. Eng. Chem. Res., 2014, 53, 15698-15717

1. Synthesis of 
process variants

5. Process 
intensification

3. Identification of 
suitable membranes

4. Evaluation of 
optimized flowsheet

2. Optimization-based 
process analysis



Conceptual Design of Conventional or Hybrid Separations
Challenges

 Tools for systematical (reaction)/separation development are scarcely used.
Reasons:
 For distillation system the build up of a simple rigorous simulation is quickly done.
 Property data for distillation may be available, but for other unit operations they are rare.
 At the beginning of a process development side-components, which are tricky to eliminate, are

often not known.
 Frequently boundary conditions like time-to-market, research capabilities and costs, catalyst-life-

time, available raw materials and utilities... determine the selection of pathways. 
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Modeling of Special Distillation Systems
Reactive Distillation

 BASF builds on more than 20 years of intensive investigations on reactive distillation, having joined
different cooperations with universities, chemical companies and equipment suppliers.

 This resulted in 
 multiple apparatus- and process-patents and publications
 Knowhow and availability of special equipment for miniplant design 
 Knowhow on simulation and scale-up for homogeneous and heterogeneous catalyzed reactive

distillation
 Application of different detail levels of simulations: EQ-reaction, defined conversion, kinetics, mass

transfer

 Main challenges: description of reaction system (kinetic investigations)
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Miller, Ch. Et al. Chem.Ing.Tech. (2004) 76 No 6, 730-733
Kaibel, G. et al. Chem.Ing.Tech. (2005) 77 No 11, 1749-1758
von Harbou, E. et al. AIChE J (2013), 59 No 5, 1533-1543



Modeling of Special Distillation Systems
Divided Wall Columns

 More than 30 years ago BASF had
implemented the first divided wall column, 
meanwhile there may be around 100 columns.

 Simulation in CHEMASIM (equation oriented) 
with special DWC module:
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Kaibel, G. Chem.Eng.Technol. 10 (1987) 92-98
Asprion, N.; Kaibel, G. Chem.Eng.Proc. 49 (2010) 139-146



Modeling of Special Distillation Systems
Divided Wall Columns

 More than 30 years ago BASF had
implemented the first divided wall column, 
meanwhile there may be around 100 columns.

 Simulation in CHEMASIM (equation oriented) 
with special DWC module.

 Different optimization methods available:
 Sequential 1-criterion optimization (S-SCO)
 Parallel 1-criterion optimization (P-SCO)
 Multi criteria optimization (MCO)

 Well established!
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Benfer, R.  PN JT Fluidverfahrenstechnik 2016, Garmisch-Partenkirchen



Modeling of Special Distillation Systems
Dynamic Simulation of Distillation

 Ten years ago rigorous dynamic simulation was a rarity and took long time to be implemented in 
conventional flowsheet simulation.

 Meantime the software has much improved -> lower hurdle, but still consuming higher runtime.

 In CHEMADIS (BASF‘s dynamic inhouse simulator) all functions of steady-state simulation are
available, but only some of them are constantly used.

 Need in dynamic simulation seems to increase with extension of simulation life cycle. 

 Expertise in dynamic simulation has to be built up.
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Parameter Adaptation for Plant Snapshots and Miniplant Experiments
Ideal MSO Workflow
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Parameter Adaptation for Plant Snapshots and Miniplant Experiments
Ideal MSO Workflow
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Operation

Data Selection

Model
Validation
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Bortz, M. et al.; Ind. Eng. Chem. Res. 2017, 56, 12672-12681
Asprion, N. et al.; Chem. Ing. Tech. 2015, 87, No. 12, 1810-1825



Parameter Adaptation for Plant Snapshots and Miniplant Experiments
Ideal MSO Workflow
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Robust
Planning

Online   
Optimization

Model
Validation

Optimization

Sensitivity
Analysis  

Properties accessible for variation
• Process parameters (T, p, m, x, … )
• Physical properties (activity coefficients, 

vapor pressures, 
enthalpies, …)

• Reaction parameters (equilibrium and
kinetic constants)

• Evaluation properties (costs, life cycle
indicators, etc.)

Sensitivities estimated from scenarios
(variation of uncertain parameters)



Sustainable Process Design –
a Multicriteria Optimization Problem
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Costs

Energy
Demand

Resources

Water
Use

Emissions

Toxicity

Product
Quality

Parameters:
 Feed stocks
 Utilities
 Process Configurations
 Equipment
 Operating Conditions
 Site
 …

Courtesy N. Asprion, BASF SE



Life Cycle Analysis in Simulation
Mapping of LCIs to Streams and Account for Direct Emissions
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Chemical process

Direct emissions
• Air emissions
• Emissions to water
• Solid wastes

Land
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. . .
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Mass Transfer in Distillation and Absorption
BASF‘s Rate-based Simulator

 BASF‘s business with gas treatment solutions has started the concepts
for mass transfer simulation already more than 15 years ago.

 Driven by the absorption team a rate-based rigorous simulation tool was 
developed, fully integrated in our in-house flowsheet simulator
CHEMASIM (equation oriented), covering
 Kinetic and equilibrium reactions
 Connection to our physical property library, especially also containing

electrolyte-thermodynamics
 Implementation of routines for the calculation of transport properties

D&A 2018 Benfer18.09.201824



Mass Transfer in Distillation and Absorption
BASF‘s Rate-based Simulator
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Two-Film-Model in Segment j

 Radial film segmentation
 Chemical reactions in bulk and film
 Different transfer models available
 Maxwell-Stefan
 Fick-Law

Axial Segmentation of Apparatus

 Axial non-equilibrium segments
 Internals + mass transfer equipment
 Mass transfer correlation
 Fluiddynamics



Mass Transfer in Absorption
Example: EO Production Process
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Reactor

SteamC2H4

O2

Absorber

Process
vent

CO2 Absorber Intermediate-
stripper

CO2 Desorber

Offgas

Water

Nitrogen Steam

Flasher
Desorber Stripper vent Refiner

Ethylenoxid

SteamSteamSteam

Evaporator
Waste water

CO2-Absorption
Desorption

EO-Absorption
Desorption

Kirk, Othmer, Encyclopedia of  Chemical Technology, 4th ed. 1991-1998

Main reactions:
1) C2H4 + 1/2 O2 → C2H4O
2) C2H4 + 3 O2 → 2 CO2 + 2 H2O

Courtesy R. Thiele, BASF SE



Mass Transfer in Distillation

 In contrast to absorption we use rigorous equilibrium stage simulation in distillation.
Advantages:
 Much faster
 Better in convergence
 Less physical property data necessary
 HETP-values are more published than parameters for mass transfer correlations

 In some cases we fail in process description.
 In which cases should rate-based simulation be used for distillation?

 Poster 36
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Mass Transfer in Distillation

 Laboratory equipment:
 Column D = 50 mm, H = 10 m; 

2.56 m packing Montz A3-500 (≅ Sulzer BX), 
segmented in parts of 240 mmm height

 15 resp. 16 sample positions along the height

 Operation conditions:
 Continuous operation or infinite reflux
 F-Factor: 0.6 – 2 Pa at 950 mbar
 Measurement of concentration and temperature

profiles
 Wide-boiling mixtures
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Mass Transfer in Distillation
Experimental Investigations at BASF



Mass Transfer in Distillation

 EQ-model: 
Choose number of theor. trays from HETP value according
to the mean F-factor.

 RB-model:
– Stefan-Maxwell diffusion
– Segment height 3.33 mm
– Chosen mass transfer correlation:

Rocha et al.* for gauze wire packing with const. 
specific transfer area (465 m²/m³)

* Rocha et al., Ind. Eng. Chem. Res. 1996, 35, 1660 - 1667    
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Mass Transfer in Distillation
Models used 
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Mass Transfer in Distillation

 EQ-model and RB-model give similar values
for sump and distillate composition (fixed by
mass balance for this system).

 Differences can be visible for ternary
composition points and inflection points.

 RB-modeling gave better predicition of
experimental results, but in some cases the
differences were only minor.
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Mass Transfer in Distillation
Examplary Results  Acetone/MeOH/H2O
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Mass Transfer in Distillation

 Adjustment of HETP value can
improve the fit of EQ-modeling
piecewise. 

 Adjustment of HETP must be done
according to material system
composition profile

 RB-modeling gave better predicition of
experimental results – no parameter
adjustment according to loading range
or material system are necessary.
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Mass Transfer in Distillation
Examplary Results  Acetone/MeOH/H2O

Continuous operation
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Mass Transfer in Distillation

 Simplified calculation of the
maximum differences
between EQ-model and RB-
model and visualisation in 
ternary plot
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Mass Transfer in Distillation
Theoretical investigations  
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Mass Transfer in Distillation

 Results show impact of the following
parameters on model discrimination:
 Relative volatility
 Diffusion coefficient
 Trace component concentration

 Workflow for best choice of model is in 
preparation
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Mass Transfer in Distillation
Theoretical investigations  



Mass Transfer in Distillation

 System DMF/2-BuOH/MeOH
Wide-boiling
 Strong differences in diffusion

coefficients

 Comparison of experimental data from
BASF experiments and calculated data
from different models in composition
trajectories
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Mass Transfer in Distillation
Example 
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This work was performed in the knowledge transfer project ‘‘Hybrid separation 
processes: Modeling and design of membrane-assisted distillation processes’’, 

which is part of the Collaborative Research Centre on ‘‘Integrated Chemical 
Processes in Liquid Multiphase Systems’’. 

Financial support by the Deutsche Forschungsgemeinschaft (DFG) is 
gratefully acknowledged. 



Conclusion

 Continous rigorous process simulation is „Standard“ in distillation and absorption applications

 Although being the most developed separation unit, there is still much improvement in the description
by simulation

 Trends:
 Physical property modeling tends to more sophisticated models
 Flowsheet simulators get universal in application:

Coupling of simulation – apparatus design – cost-, material- and energy-flow analysis –
automatisation – real time optimization

 Creation of Apps for quick information of selected applications
 Increasing use of instationary simulation
 Rate-based modeling will increase
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Challenges und Perspectives

 Technical understanding is necessary for applying simulations and vice versa.

 Tools and applications have to be used on a regular base, otherwise they won‘t get alive.

 The extensive increase of data needs more emphasized standardization and documentation.

 Experiments will still be necessary! 
-> But they can be done more focussed (DoE) and with better technical support (MSO Workflow).

 The extended life cycle of models needs a continuous maintenance by experts.

Process simulation is challenging & exciting!
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